74th Annual Meeting of European Federation of Animal Science EAAP 2023 26th Aug – 1st Sep 2023 Lyon, France # UAV-based approaches for gaseous emissions assessment in cattle farming V. Becciolini¹, A. Mattia¹, M. Merlini¹, G. Rossi¹, F. Squillace¹, G. Coletti², U. Rossi² and M. Barbari¹ ¹ Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy ² Project & Design S.r.l.s., Firenze, Italy # GHG and NH₃ emissions from agriculture & livestock sector | | 2021 | | 2016 | | 2011 | | 2006 | | |-------------|-----------------------|-------|-----------------------|------|-----------------------|------|-----------------------|------| | | kt CO ₂ eq | % | | Agriculture | 378,430.47 | 10.3% | 386,350.86 | 9.5% | 375,710.69 | 8.7% | 386,079.74 | 8.0% | GHG emissions in the EU Source: EEA 14.7% Agriculture contributes for 90% to NH₃ emissions in the EU Source: EEA - Energy supply - Industry - Agriculture - Other combustion - Transport - Residential and commercial - Waste ## **UAV-based techniques for point-source emissions...** from landfills and oil/gas plants to dairy farms? **Q**: Where are emissions coming from? How much? What are the spots to focus on? **Q**: Where are emissions coming from? How much? What are the processes to focus on? How far can gases be spread? # Exponential growth of applied research in UAV-based atmospheric chemical sensing In 2021 and 2022 68 scientific papers were published on the topic = Number of scientific papers published in the previous 9 years Bedin et al. 2023. State of the art and future perspectives of atmospheric chemical sensing using Unmanned Aerial Vehicles: a bibliometric analysis. *Sensors*. In press. TO NOW THE WAY - 1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms? - 2. What type of equipment is required? - 3. Can low-cost technologies be employed for this purpose? - 4. What methods can be applied to map and estimate gaseous emissions? - 5. How can a protocol be built and validated? #### 1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms? Uncertainties in emission data - GHG assessment from livestock farming - Mitigation practices efficacy assessment Decision support system www.cccfarming.eu Evaluate the potential use of drones equipped with sensors to identify hotspots of CH₄ and CO₂ emissions at farm scale linked to a real-time kinematic positioning system Study a rapid top-down approach to derive emission fluxes in dairy farms Atmospheric sampling Atmospheric dispersion models TENTAL TORREY **Platforms** **Ground-based** Aircrafts and UAVs - Heavy and accurate instrumentation - Sampling void between ground and high altitudes - High geospatial coverage - Payload and energetic limits (small aircrafts) Weight Payload limit Max air speed Wing type Propeller type 100 g to 20 kg - Fixed-wing - Rotary-wing - (Liquid fuel) - Batteries Wind measurement Ground-based Easier data processing Can introduce measurement uncertainty Onboard UAVs Coupled gas-wind measurement Wind field of the UAV can interfere Flux quantification requires accurate wind speed and direction Type of anemometer - Cup anemometer - 2D ultrasonic anemometer - 3D ultrasonic anemometer THAT I WAS TO SEEN Gas measurement approaches | | amples collected
poard the UAV | High performance instrumentation Discretized gas measurements (low spatial resolution) | | |-----|--|---|-----| | | ampled throughing connected to the UAV | High performance instrumentation Caution due to lag-time Tethering causes logistic issues and reduced range of motion | 0 | | Air | r sampled live
board the UAV | Requires lightweight instruments (lower accuracy) Continuous gas measurements (high spatial resolution) Payload may decrease flight autonomy Downwash affects air sampling | 000 | Laser absorption spectroscopy sensors #### Gas sensors Sensor choice depends on the target gas species (CO₂, CH₄, NH₃) | Electrochemical sensors | NH₃ Limited cost (hundreds €) + Low power consumption Cross-sensitivity, drift, limited lifetime | |--|---| | Non-dispersive infrared sensors (NDIR) | CO₂ Limited cost (hundreds €) + Higher lifetime Accuracy (ppm) affected by T, P_{atm} + Higher power consumption | Tunable diode laser absorption spectrometers Off-axis integrated cavity output spectrometers Cavity Ring-Down Spectrometers (CRDS) Gas sensors Laser absorption spectroscopy sensors Tunable diode laser absorption spectrometers (TDLAS) Off-axis integrated cavity output spectrometers (OA-ICO) Cavity Ring-Down Spectrometers (CRDS) - CO₂, CH₄, NH₃ - High cost (~ 6k €) - High accuracy (ppm) + Available for **UAVs** **CLOSED CHAMBER** - CO₂, CH₄, NH₃ - Higher cost - Higher precision (ppb) **OPEN PATH** - CO₂,CH₄, NH₃ - Higher cost + Expertise required - Higher precision (ppb) + prototype for **UAVs** #### 3. Can low-cost technologies be employed for this purpose? **Electrochemical** sensors **BUT!** #### 3. Can low-cost technologies be employed for this purpose? #### ...as an alternative Ready to use commercial solutions #### **BUT!** - Cost (from 20k €) - Sensor calibration under standard conditions - Sensor lifetime - Are dispersion models suitable? Accurate evaluation is required ### 4. What methods can be applied to map and estimate gaseous emissions? TOREN. Flux quantification approaches (short range dispersion) | I | Mass balance
modelling | |---|---------------------------| | | | Requires a constant wind field between upwind and downwind measurements Gaussian statistics are used to infer gaseous fluxes downwind a point source Requires large amounts of time averaging Lagrangian stochastic modelling - Simulate the path of particles as they travel with the local wind field - Computational time may be high - Multiple simultaneous measurements are required when multiple sources are present The methods require upwind (i.e. background) and downwind gas concentration measurements **Modelling expertise** is required OR Specific **software environments** that incorporate dispersion models #### 5. How can a protocol be built and validated? - 1. Selection of sensors and flux quantification method (model) - 2. Sensor validation under laboratory conditions (mandatory for electrochemical and NDIR sensors) - 3. Based on the chosen model, plan field tests to meet requirements and assumptions with **controlled gas sources** - 4. Address sampling issues, assess the magnitude of errors, validate measurements, refine the protocol - 5. Validate measurements in uncontrolled field conditions # 1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms? #### IV Convegno AISSA#under40 Campus di Fisciano, 12-13 luglio 2023 Corso di Agraria-DIFARMA - Università degli Studi di Salerno Deducing emission rates from gas concentrations in a dairy cattle farm through a backward Lagrangian stochastic method-based model Alessio Mattia ¹, Marco Merlini ¹, Rafael Pinheiro Amantea ¹, Gabriele Coletti ², Federico Squillace ¹, Giuseppe Rossi ¹, Matteo Barbari ¹, Valentina Becciolini ¹. ¹ Department of Agriculture, Food, Environment, and Forestry (DAGRI) University of Florence, Florence, 50144, Piazzale delle Cascine, 18 ² Project & Design s.r.l.s., Florence, 50142, Italy ## ... Concluding UAV-suited technologies for GHG emission assessment are still in their infancy #### Opportunities Rapid and real-time assessment of emission fluxes Identification of critical processes Development of decision support systems for farmers #### Limitations Sensing technologies (accuracy, limits of detection, size/weight) Costs Dispersion models Expertise # Thank you for your attention! Valentina Becciolini, PhD valentina.becciolini@unifi.it