

74th Annual Meeting of European Federation of Animal Science EAAP 2023

26th Aug – 1st Sep 2023 Lyon, France

UAV-based approaches for gaseous emissions assessment in cattle farming

V. Becciolini¹, A. Mattia¹, M. Merlini¹, G. Rossi¹, F. Squillace¹, G. Coletti², U. Rossi² and M. Barbari¹

¹ Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy

² Project & Design S.r.l.s., Firenze, Italy

GHG and NH₃ emissions from agriculture & livestock sector

	2021		2016		2011		2006	
	kt CO ₂ eq	%	kt CO ₂ eq	%	kt CO ₂ eq	%	kt CO ₂ eq	%
Agriculture	378,430.47	10.3%	386,350.86	9.5%	375,710.69	8.7%	386,079.74	8.0%

GHG emissions in the EU Source: EEA

14.7%

Agriculture
contributes for
90% to NH₃
emissions in
the EU
Source: EEA

- Energy supply
- Industry
- Agriculture
- Other combustion

- Transport
- Residential and commercial
- Waste

UAV-based techniques for point-source emissions... from landfills and oil/gas plants to dairy farms?

Q: Where are emissions coming from? How much? What are the spots to focus on?

Q: Where are emissions coming from? How much? What are the processes to focus on? How far can gases be spread?

Exponential growth of applied research in UAV-based atmospheric chemical sensing

In 2021 and 2022 68 scientific papers were published on the topic

=

Number of scientific papers published in the previous 9 years

Bedin et al. 2023. State of the art and future perspectives of atmospheric chemical sensing using Unmanned Aerial Vehicles: a bibliometric analysis. *Sensors*. In press.

TO NOW THE WAY

- 1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?
- 2. What type of equipment is required?
- 3. Can low-cost technologies be employed for this purpose?
- 4. What methods can be applied to map and estimate gaseous emissions?
- 5. How can a protocol be built and validated?

1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?

Uncertainties in emission data

- GHG assessment from livestock farming
- Mitigation practices efficacy assessment

Decision support system

www.cccfarming.eu

Evaluate the potential use of drones equipped with sensors to identify hotspots of CH₄ and CO₂ emissions at farm scale linked to a real-time kinematic positioning system

Study a rapid top-down approach to derive emission fluxes in dairy farms

Atmospheric sampling

Atmospheric dispersion models

TENTAL TORREY

Platforms

Ground-based

Aircrafts and UAVs

- Heavy and accurate instrumentation
- Sampling void between ground and high altitudes
- High geospatial coverage
- Payload and energetic limits (small aircrafts)

Weight

Payload limit

Max air speed

Wing type

Propeller type

100 g to 20 kg

- Fixed-wing
- Rotary-wing
- (Liquid fuel)
- Batteries

Wind measurement Ground-based

Easier data processing

Can introduce measurement uncertainty

Onboard UAVs

Coupled gas-wind measurement Wind field of the UAV can interfere

Flux quantification requires accurate wind speed and direction

Type of anemometer

- Cup anemometer
- 2D ultrasonic anemometer
- 3D ultrasonic anemometer

THAT I WAS TO SEEN

Gas measurement approaches

	amples collected poard the UAV	 High performance instrumentation Discretized gas measurements (low spatial resolution) 	
	ampled throughing connected to the UAV	 High performance instrumentation Caution due to lag-time Tethering causes logistic issues and reduced range of motion 	0
Air	r sampled live board the UAV	 Requires lightweight instruments (lower accuracy) Continuous gas measurements (high spatial resolution) Payload may decrease flight autonomy Downwash affects air sampling 	000

Laser absorption

spectroscopy

sensors

Gas sensors

Sensor choice depends on the target gas species (CO₂, CH₄, NH₃)

Electrochemical sensors	 NH₃ Limited cost (hundreds €) + Low power consumption Cross-sensitivity, drift, limited lifetime
Non-dispersive infrared sensors (NDIR)	 CO₂ Limited cost (hundreds €) + Higher lifetime Accuracy (ppm) affected by T, P_{atm} + Higher power consumption

Tunable diode

laser absorption

spectrometers

Off-axis integrated

cavity output

spectrometers

Cavity Ring-Down

Spectrometers

(CRDS)

Gas sensors

Laser absorption spectroscopy sensors

Tunable diode laser absorption spectrometers (TDLAS)

Off-axis integrated cavity output spectrometers (OA-ICO)

Cavity Ring-Down Spectrometers (CRDS)

- CO₂, CH₄, NH₃
- High cost (~ 6k €)
- High accuracy (ppm) + Available for **UAVs**

CLOSED CHAMBER

- CO₂, CH₄, NH₃
- Higher cost
- Higher precision (ppb)

OPEN PATH

- CO₂,CH₄, NH₃
- Higher cost + Expertise required
- Higher precision (ppb) + prototype for **UAVs**

3. Can low-cost technologies be employed for this purpose?

Electrochemical sensors

BUT!

3. Can low-cost technologies be employed for this purpose?

...as an alternative

Ready to use commercial solutions

BUT!

- Cost (from 20k €)
- Sensor calibration under standard conditions
- Sensor lifetime
- Are dispersion models suitable? Accurate evaluation is required

4. What methods can be applied to map and estimate gaseous emissions?

TOREN.

Flux quantification approaches (short range dispersion)

I	Mass balance modelling

Requires a constant wind field between upwind and downwind measurements

 Gaussian statistics are used to infer gaseous fluxes downwind a point source

Requires large amounts of time averaging

Lagrangian stochastic modelling

- Simulate the path of particles as they travel with the local wind field
- Computational time may be high
- Multiple simultaneous measurements are required when multiple sources are present

The methods require upwind (i.e. background) and downwind gas concentration measurements

Modelling expertise is required OR

Specific **software environments** that incorporate dispersion

models

5. How can a protocol be built and validated?

- 1. Selection of sensors and flux quantification method (model)
- 2. Sensor validation under laboratory conditions (mandatory for electrochemical and NDIR sensors)
- 3. Based on the chosen model, plan field tests to meet requirements and assumptions with **controlled gas sources**
- 4. Address sampling issues, assess the magnitude of errors, validate measurements, refine the protocol
- 5. Validate measurements in uncontrolled field conditions

1. Can technologies and methods for gaseous hotspots mapping and emission estimation from point sources be transposed to livestock farms?

IV Convegno AISSA#under40

Campus di Fisciano, 12-13 luglio 2023 Corso di Agraria-DIFARMA - Università degli Studi di Salerno

Deducing emission rates from gas concentrations in a dairy cattle farm through a backward Lagrangian stochastic method-based model

Alessio Mattia ¹, Marco Merlini ¹, Rafael Pinheiro Amantea ¹, Gabriele Coletti ², Federico Squillace ¹, Giuseppe Rossi ¹, Matteo Barbari ¹, Valentina Becciolini ¹.

¹ Department of Agriculture, Food, Environment, and Forestry (DAGRI) University of Florence, Florence, 50144, Piazzale delle Cascine, 18

² Project & Design s.r.l.s., Florence, 50142, Italy

... Concluding

UAV-suited technologies for GHG emission assessment are still in their infancy

Opportunities

Rapid and real-time assessment of emission fluxes Identification of critical processes Development of decision support systems for farmers

Limitations

Sensing technologies (accuracy, limits of detection, size/weight)
Costs
Dispersion models

Expertise

Thank you for your attention!

Valentina Becciolini, PhD

valentina.becciolini@unifi.it