

A dynamic *in silico* model of rumen microbial fermentation and methane production

Rafael Muñoz-Tamayo¹, Seppo Ahvenjärvi², Ali R. Bayat², Ilma Tapio³

¹ Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120, Palaiseau, France

² Animal Nutrition, Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland

³ Genomics and Breeding, Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland

The rumen microbiota: key player of the animal

- Feed efficiency
- O Ruminant production
- Health and well-being
- O Environmental footprint

- Enhance understanding of rumen function
- Provide virtual platform to simulate the dynamics of rumen fermentation and methane production
 - Potential use in the design of nutritional strategies to improve animal health, production, and reduce methane production

ELSEVIER

Journal of Dairy Science Volume 96, Issue 6, June 2013, Pages 3867-3885

Revised digestive parameter estimates for the Molly cow model

M.D. Hanigan * ♀ ⊠, J.A.D.R.N. Appuhamy *, P. Gregorini †

Livestock Science Volume 178, August 2015, Pages 71-80

Nordic dairy cow model Karoline in predicting methane emissions: 1. Model description and sensitivity analysis

Pekka Huhtanen * 🎗 🖾, Mohammad Ramin *, Peter Udén ^b

Journal of ANIMAL SCIENCE

A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application¹

J. A. N. Mills 🕿, J. Dijkstra, A. Bannink, S. B. Cammell, E. Kebreab, J. France

master

Aspects for improvement (Ellis et al., 2008, J. Agric. Sci.; Janssen 2010, AFST)

- Better representation of the microbiota
- Incorporation of hydrogen dynamics
- Thermodynamic control

Dynamic component has been seldom considered in model evaluations and in model exploitation

- Assumption of steady-state
- An exception (van Lingen et al., 2019, JTB)

Our modelling strategy: integrating in vitro, in vivo, in silico

Our model in figures: mass fluxes

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818368

(m)aster

Our model in figures: fermentation pathway

20

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818368

(m)aster

- Mass balance equations: ordinary differential equations $\frac{d\mathbf{x}}{dt} = \mathbf{S} \cdot \boldsymbol{\rho}(\mathbf{x}, \mathbf{p}) - \mathbf{g}(\mathbf{x}, \mathbf{p})$
- x: vector of metabolites concentrations
- S: stoichiometry matrix
- $ho(\mathbf{x},\mathbf{p})$: vector of reaction rates
- $\mathbf{g}(\mathbf{x},\mathbf{p})$: function vector of tranport phenomena
- 21 state variables (compartiments)
- 37 parameters
 - Physicochemical and fermentation parameters (yield factors, Monod parameters of the kinetic rates): Muñoz-Tamayo et al., (2016), AFST
 - absorption rate constants: initial guess from Dieho et al., (2016), JDS
 - microbial biomass data: Ahvenjärvi et al. (2002), JAS; (2018) JDS
 - passage rates: Bayat et al., (2011), AFST

Model calibration (parameter estimation)

- Experimental data from 4 Nordic-Red dairy cows rumen fistula (2 days)
 - Dry matter intake: 3 h
 - Rumen sampling for VFA (acetate, butryrate, propionate) determination: 3 h
 - Methane in respiration chambers: 17 min
- Maximum likelihood estimation
 - 5 parameters:
 - absorption rate constants of VFAs
 - Hydrolysis rate constants of NSC and protein
 - Check for identifiability

IDEAS: a Parameter Identification Toolbox with Symbolic Analysis of Uncertainty and its Application to Biological Modelling

R. Muñoz-Tamayo ^{*,} ¶, [§]⊠, B. Laroche ^{*}⊠, M. Leclerc [¶]⊠, E. Walter ^{*}⊠

https://doi.org/10.3182/20090706-3-FR-2004.00211

Example results: one cow

Capability of the model to represent the dynamic pattern of fermentation

	CVRMSE
Acetate	9%
Butyrate	11%
Propionate	13%
CH4	21%
Cummulative CH4	5%

- Our mathematical model represents satisfactorily the rumen fermentation and CH4 production by dairy cows
- Ongoing work
 - Include mechanistic description of pH (Muñoz-Tamayo et al., 2016, AFST)
 - Include hydrogen thermodynamic control (Muñoz-Tamayo et al., 2021, PCJ)
 - Make the code Open Source and available for the scientific community
 - User interface: R or Python

Join the next generation publication model for open and transparent science

Peer Community In

Animal Science

Free and transparent preprint and postprint recommendations in animal science

PCI_AnimSci

https://animsci.peercommunityin.org

contact@animsci.peercommunityin.org

13

 Cows were offered total mixed ration at 7:00, 13:00 and 19:00 h consisting of grass silage (timothy-meadow fescue sward) provided at 45:55 forage to concentrate ratio on a dry matter basis.

TMR = 58 kg/dDMI = 26 kg/d

- NDF = 39%, NSC = 36%, PRO = 15%
- Acclimatisation period in chambers: 1 day