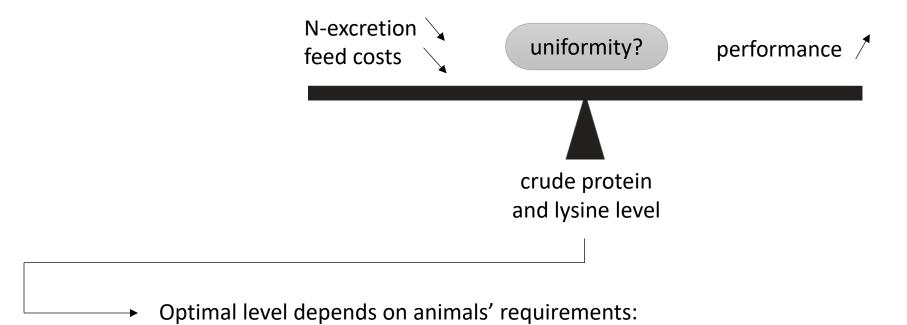


Effect of lysine level in finisher diets on performance in crossbreds from two terminal sire lines


Sophie Goethals

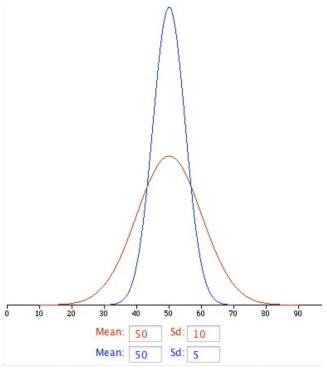
Katrijn Hooyberghs, Nadine Buys, Steven Janssens, Sam Millet

EAAP 2023

Background

- Feed intake capacity
- Protein deposition capacity

genetics


sex

age

Background project

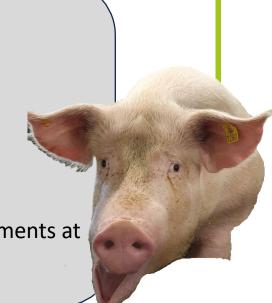
UNIPIG project

- 1. Reduction of variation in body weight in fattening pigs (genetics, sorting strategies, ...)
- 2. Reduction of the costs of variation (precision feeding, slaughter in different batches, ...)

Research question

Effect of lysine level in finisher diet in crossbreds from 2 terminal sire lines

- Growth performance
- N-efficiency
- Carcass quality
- Meat quality


Related to study design:

- 1. Did we select animals with a difference in lysine requirement?
- 2. Did we select lysine levels above and under the requirement of the animals?

Related to uniformity (focus on body weight):

- 1. Is there a difference in uniformity in crossbreds from 2 different sire lines?
- 2. Does suboptimal feeding affect uniformity?

Hypothesis: Animals with a higher lysine requirement will be fed below their requirements at a low lysine diet, resulting in increased variation in body weight.

UNIPIG — lysine and sire line 🕳

2 × 2 × 2 experimental design

Insemination Farrowing Weaning Starter Grower Finisher Slaughter

(4w) (9,5w) (50 kg) (80 kg) (115 kg)

VS

GROWTH	CARCASS
stress negative	stress positive
sire line	sire line
selected for	selected for
growth rate	carcass quality

	Starter	Grower	Finisher	
			Low Lys	High Lys
SID Lys (g/kg)	10,6	9,5	6,3	7,8
Crude protein (g/kg)	178	160	126	140
Net energy 2015 (MJ/kg)	9,68	9,68	9,68	9,68
SID Lys (g/MJ NE ₂₀₁₅)	1,10	0,98	0,65	0,81

₽₫

gilts barrows

Individual weighing, weekly: growth performance

Blood sample right before and 1 week after test diets Serum urea Carcass quality
Meat quality

3 batches; 360 pigs in total; 45 pigs/treatment

Meat quality: 1 batch; 120 pigs in total

Overview parameters

Growth performance (80-115 kg)

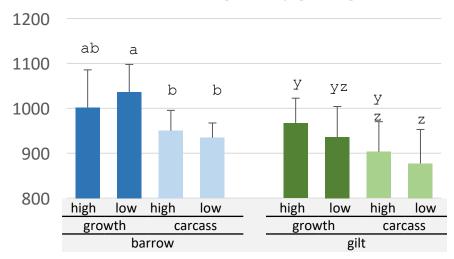
- Average daily gain
- Average daily feed intake
- Feed conversion ratio

N-efficiency

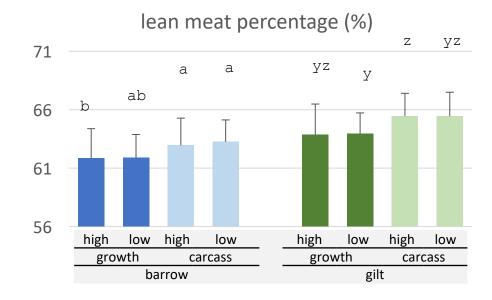
- Serum urea (= measure for protein excess)
- N-efficiency (= incorporated N/N intake)

Carcass quality

- Dressing yield
- Lean meat percentage


Meat quality

- pH_{35min} and pH_{24h}
- Intramuscular fat
- Drip loss



Effects related to sire line and sex?

	P-value
sex x sire line x diet	NS
sire line	< 0,001
diet	NS
sex	< 0,001

	P-value
sex x sire line x diet	NS
sire line	< 0,001
diet	NS
sex	< 0,001

Effect of sire line?

And sex?

Growth performance (80-115 kg)

- Average daily gain
- Average daily feed intake
- Feed conversion ratio

growth > carcass

growth > carcass

- barrow > gilt
- barrow > gilt
- barrow > gilt

N-efficiency

- Serum urea (measure for protein excess)
- N-efficiency (incorporated N/N intake)

- barrow > gilt
 - gilt > barrow

Carcass quality

- Dressing yield
- Lean meat percentage

carcass > growth

carcass > growth

- .
- carcass > growth gilt > barrow

Meat quality

- pH_{35min} and pH_{24h}
- Intramuscular fat
- Drip loss

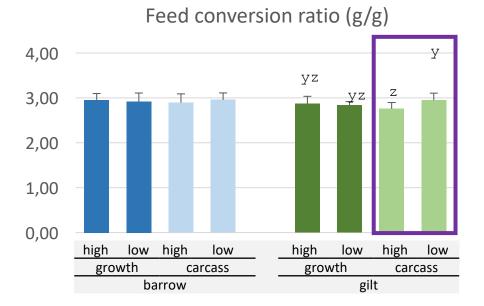
growth > carcass

/

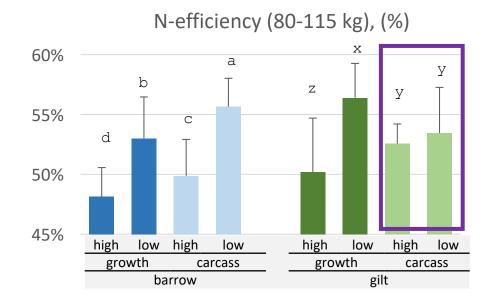
/

/

barrow > gilt

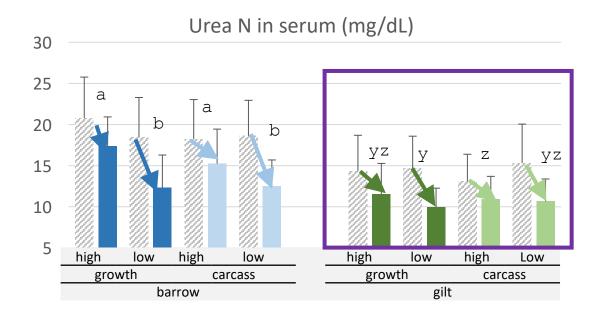

/

Did we select animals with a difference in lysine requirement?


reflected in most parameters related to growth performance, N-efficiency and carcass quality.

Effect of **sex** was in line with expectations.

Effects of diet?


	P-value	
sex x sire line x diet	NS	
sire line	NS	
diet	NS	
sex	0,049	

	P-value
sex x sire line x diet	< 0,001
sire line	0,012
diet	< 0,001
sex	< 0,001

Effects of diet?

	P-value
sex x sire line x diet	NS
sire line	NS
diet	< 0,001
sex	NS

- End of 2nd phase (16% CP)
- 1 week after switch to test diets (14% or 12,6% CP)

Effect of diet?

Growth performance (80-115 kg)

- Average daily gain
- Average daily feed intake
- Feed conversion ratio

N-efficiency

- Serum urea (measure for protein excess)
- N-efficiency (incorporated N/N intake)

1

low lysine > high lysine; only in gilts selected for carcass quality

high lysine > low lysine; only in barrows

low lysine > high lysine; only in gilts selected for carcass quality

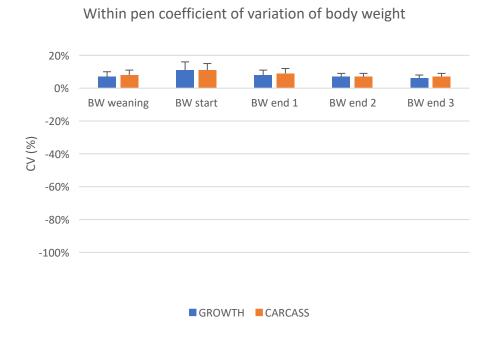
Carcass quality

- Dressing
- Lean me

Meat qual

- pH_{35min}
- Intramu
- Drip lost

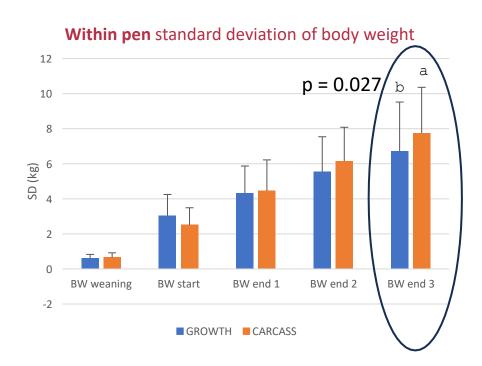
Did we select lysine levels above and under the requirement of the animals?

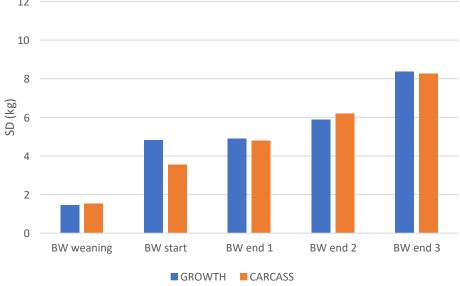

Based on the feed conversion ratio and N-efficiency parameters, the low lysine diet (versus high lysine diet) only negatively affected growth performance in gilts selected for carcass quality.

⇒ Suboptimal feeding was only achieved in these animals

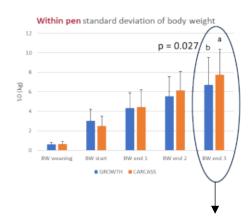
Effects of sire line or diets on uniformity?

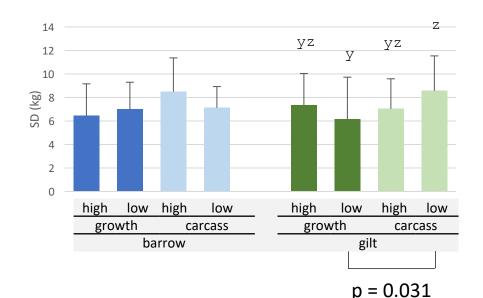
VARIATION IN BODY WEIGHT RELATED TO GENETIC BACKGROUND DISTRIBUTION OF BODY WEIGHT BACKGROUND DISTRIBUTION DISTRIBUT



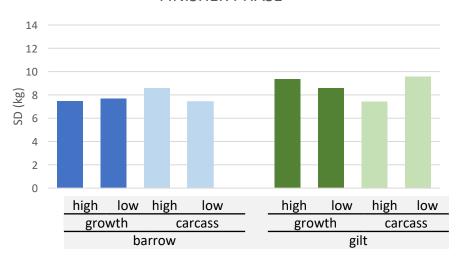


Effects of sire line or diets on uniformity?


VARIATION IN BODY WEIGHT RELATED TO GENETIC BACKGROUN Be equival - blank. Within pen standard deviation of body weight Within batch standard deviation of body weight



Effects of sire line or diets on uniformity?


Within pen standard deviation of body weight FINISHER PHASE

Within batch standard deviation of body weight

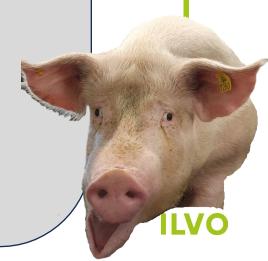
12
10
8
8
4
2
0
BW wearing BW start BW end 1
BW end 2
BW end 3

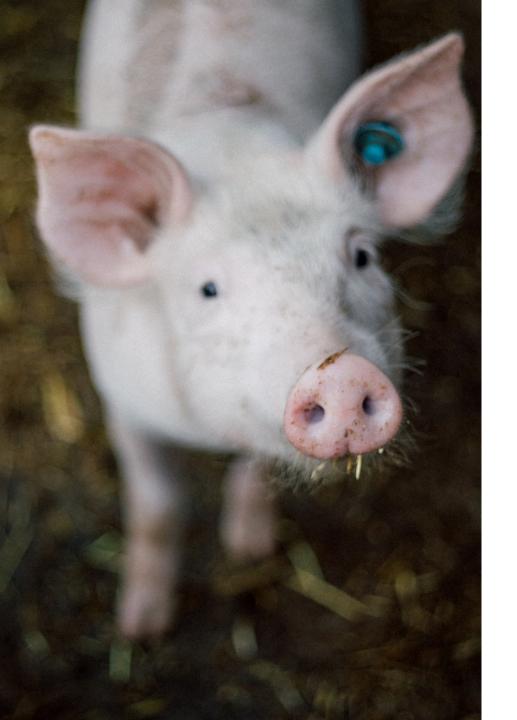
Within batch standard deviation of body weight FINISHER PHASE

Conclusions

Related to study design:

- 1. Did we select animals with a difference in lysine requirement? Effects of sire line and sex on performance, N-efficiency and carcass quality indicate different requirements
- 2. Did we select lysine levels above and under the requirement of the animals? Presumably only gilts selected for carcass quality were fed below their requirements


Related to uniformity (focus on body weight):


1. Is there a difference in uniformity in crossbreds from 2 different sire lines?

2. Does suboptimal feeding affect uniformity?

Thank you!

Passion for Farming

