Effect of lysine level in finisher diets on performance in crossbreds from two terminal sire lines #### **Sophie Goethals** Katrijn Hooyberghs, Nadine Buys, Steven Janssens, Sam Millet **EAAP 2023** ## Background - Feed intake capacity - Protein deposition capacity genetics sex age ## **Background project** #### **UNIPIG** project - 1. Reduction of variation in body weight in fattening pigs (genetics, sorting strategies, ...) - 2. Reduction of the costs of variation (precision feeding, slaughter in different batches, ...) ## Research question Effect of lysine level in finisher diet in crossbreds from 2 terminal sire lines - Growth performance - N-efficiency - Carcass quality - Meat quality #### Related to study design: - 1. Did we select animals with a difference in lysine requirement? - 2. Did we select lysine levels above and under the requirement of the animals? #### Related to uniformity (focus on body weight): - 1. Is there a difference in uniformity in crossbreds from 2 different sire lines? - 2. Does suboptimal feeding affect uniformity? **Hypothesis**: Animals with a higher lysine requirement will be fed below their requirements at a low lysine diet, resulting in increased variation in body weight. ## UNIPIG — lysine and sire line 🕳 ## 2 × 2 × 2 experimental design Insemination Farrowing Weaning Starter Grower Finisher Slaughter (4w) (9,5w) (50 kg) (80 kg) (115 kg) VS | GROWTH | CARCASS | |-----------------|-----------------| | stress negative | stress positive | | sire line | sire line | | selected for | selected for | | growth rate | carcass quality | | | Starter | Grower | Finisher | | |------------------------------------|---------|--------|----------|----------| | | | | Low Lys | High Lys | | SID Lys (g/kg) | 10,6 | 9,5 | 6,3 | 7,8 | | Crude protein (g/kg) | 178 | 160 | 126 | 140 | | Net energy 2015 (MJ/kg) | 9,68 | 9,68 | 9,68 | 9,68 | | SID Lys (g/MJ NE ₂₀₁₅) | 1,10 | 0,98 | 0,65 | 0,81 | ₽₫ gilts barrows Individual weighing, weekly: growth performance Blood sample right before and 1 week after test diets Serum urea Carcass quality Meat quality 3 batches; 360 pigs in total; 45 pigs/treatment Meat quality: 1 batch; 120 pigs in total ## **Overview parameters** ### Growth performance (80-115 kg) - Average daily gain - Average daily feed intake - Feed conversion ratio ### N-efficiency - Serum urea (= measure for protein excess) - N-efficiency (= incorporated N/N intake) ### Carcass quality - Dressing yield - Lean meat percentage ### Meat quality - pH_{35min} and pH_{24h} - Intramuscular fat - Drip loss ## Effects related to sire line and sex? | | P-value | |------------------------|---------| | sex x sire line x diet | NS | | sire line | < 0,001 | | diet | NS | | sex | < 0,001 | | | P-value | |------------------------|---------| | sex x sire line x diet | NS | | sire line | < 0,001 | | diet | NS | | sex | < 0,001 | ## **Effect of sire line?** ## And sex? #### **Growth performance (80-115 kg)** - Average daily gain - Average daily feed intake - Feed conversion ratio growth > carcass growth > carcass - barrow > gilt - barrow > gilt - barrow > gilt #### **N-efficiency** - Serum urea (measure for protein excess) - N-efficiency (incorporated N/N intake) - barrow > gilt - gilt > barrow #### **Carcass quality** - Dressing yield - Lean meat percentage #### carcass > growth carcass > growth - . - carcass > growth gilt > barrow #### **Meat quality** - pH_{35min} and pH_{24h} - Intramuscular fat - Drip loss #### growth > carcass / / #### / barrow > gilt / ## Did we select animals with a difference in lysine requirement? reflected in most parameters related to growth performance, N-efficiency and carcass quality. Effect of **sex** was in line with expectations. ## Effects of diet? | | P-value | | |------------------------|---------|--| | sex x sire line x diet | NS | | | sire line | NS | | | diet | NS | | | sex | 0,049 | | | | P-value | |------------------------|---------| | sex x sire line x diet | < 0,001 | | sire line | 0,012 | | diet | < 0,001 | | sex | < 0,001 | ## Effects of diet? | | P-value | |------------------------|---------| | sex x sire line x diet | NS | | sire line | NS | | diet | < 0,001 | | sex | NS | - End of 2nd phase (16% CP) - 1 week after switch to test diets (14% or 12,6% CP) ## Effect of diet? #### **Growth performance (80-115 kg)** - Average daily gain - Average daily feed intake - Feed conversion ratio #### **N-efficiency** - Serum urea (measure for protein excess) - N-efficiency (incorporated N/N intake) 1 low lysine > high lysine; only in gilts selected for carcass quality high lysine > low lysine; only in barrows low lysine > high lysine; only in gilts selected for carcass quality #### Carcass quality - Dressing - Lean me #### Meat qual - pH_{35min} - Intramu - Drip lost Did we select lysine levels above and under the requirement of the animals? Based on the feed conversion ratio and N-efficiency parameters, the low lysine diet (versus high lysine diet) only negatively affected growth performance in gilts selected for carcass quality. ⇒ Suboptimal feeding was only achieved in these animals ## Effects of sire line or diets on uniformity? # VARIATION IN BODY WEIGHT RELATED TO GENETIC BACKGROUND DISTRIBUTION OF BACKGROUND DISTRIBUTION OF BODY WEIGHT BACKGROUND DISTRIBUTION DISTRIBUT ## Effects of sire line or diets on uniformity? # VARIATION IN BODY WEIGHT RELATED TO GENETIC BACKGROUN Be equival - blank. Within pen standard deviation of body weight Within batch standard deviation of body weight ## Effects of sire line or diets on uniformity? Within pen standard deviation of body weight FINISHER PHASE Within batch standard deviation of body weight 12 10 8 8 4 2 0 BW wearing BW start BW end 1 BW end 2 BW end 3 Within batch standard deviation of body weight FINISHER PHASE ## Conclusions #### Related to study design: - 1. Did we select animals with a difference in lysine requirement? Effects of sire line and sex on performance, N-efficiency and carcass quality indicate different requirements - 2. Did we select lysine levels above and under the requirement of the animals? Presumably only gilts selected for carcass quality were fed below their requirements #### Related to uniformity (focus on body weight): 1. Is there a difference in uniformity in crossbreds from 2 different sire lines? 2. Does suboptimal feeding affect uniformity? ## Thank you! Passion for Farming