

Are pre-weaning piglet and sow parameters a proxy for uniformity and daily gain?

K. Hooyberghs, S. Goethals, W. Gorssen, L. Chapard, R. Meyermans, B. Chakkingal Bhaskaran,

S. Millet, S. Janssens and N. Buys

Situation

† economic, ecological and social costs

Observational study: objective

Find out which sow-, litter- and piglet-specific parameters contribute to variation of weights and average daily gain

Monitoring **sows**: farrowing house

Follow-up of piglets: from birth to slaughter

Data collection of sows in farrowing house

Before farrowing

Weigh individually

Data collection of piglets: from birth till slaughter

Collected data

Farm	Batch	Number of litters	Number of piglets (born alive)	Number of boars	Total litter size	Litter size born alive
1	1	14	240 (213)	5	8-22 (17.1)	8-20 (15.2)
	2	15	248 (223)	8	4-27 (16.5)	4-21 (14.9)
2	3	31	542 (466)	unknown	8-26 (17.5)	8-22 (15.0)

Coefficient of variation (CV) of body weight per litter decreases over time

Are piglet-specific parameters correlated?

Factor analysis of sow-/litter-specific parameters

Factors associated with birth weight

Variable ¹	Coefficient	Standard error	P value
Intercept	2.08	0.28	<0.001
Sex (f)	-0.06	0.02	0.006
Number of piglets born alive	-0.03	0.009	<0.001
Parity	0.02	0.02	0.03
Weight of sow before farrowing (kg)	-0.0008	0.0009	0.006
Time between birth (minutes)	0.001	0.0005	0.10

¹Round and sow nested within round were included as random variables

→ The fixed-effect model explained 11.3% of the variation in birth weight

Factors associated with weaning weight

Variable ¹	Coefficient	Standard error	P value
Intercept	3.23	0.62	<0.001
Parity	0.11	0.06	<0.001
Back fat thickness of sow at farrowing (mm)	-0.04	0.03	0.005
Birth weight (kg)	3.11	0.18	<0.001
Difference in body circumference (cm)	-0.02	0.02	0.006

¹Round and sow nested within round were included as random variables

→ The fixed-effect model explained **33.6%** of the variation in weaning weight

Factors associated with ADG before weaning

Variable ¹	Coefficient	Standard error	P value
Intercept	179.92	118.94	<0.001
Back fat thickness of sow before farrowing (mm)	-2.08	1.31	<0.001
Body weight of sow before farrowing (kg)	0.20	0.11	<0.001
Number of teats	4.37	3.32	0.007
Birth weight (kg)	80.02	6.81	<0.001
Weaning age (days)	-5.71	3.53	<0.001
Difference in body circumference (cm)	-0.64	0.62	0.01

¹Round and sow nested within round were included as random variables

→ The fixed-effect model explained 19.6% of the variation in ADG before weaning

Uniformity of birth weight is more associated with litter size including stillborns and mummies

→ Lot of variation between sows with similar litter sizes

Uniformity of weaning weight is similarly associated with litter size including stillborns and mummies and litter size of live-born piglets

Conclusion

Current models explain:

11.3% of the variation in birth weight

33.6% of the variation in weaning weight

19.6 % of the variation in ADG before weaning

The **number of piglets born** is positively associated with the variation of body weights, BUT there is a **remaining variance** that we cannot yet attribute.

Future steps

Analyse data until slaughter DNA analysis to identify half-sibs

Acknowledgements

VLAIO for funding the UNIPIG project

ILVO technicians for the help during the fieldwork

- Maxim Van Ryckeghem
- Sam Decubber
- Anja Van Havermaet
- Robbe Vandenhaute
- Kim De Winter

