Dietary polyphenol extracts improve the performance of broilers challenged with necrotic enteritis

S.A. Salami¹, L. Chew², B.S. Lumpkins³ and B.M. Tas¹

¹Mootral Ltd, UK

Abstract: 41320

28 AUGUST 2023

²Mootral SA, Malaysia

³Southern Poultry Feed & Research Inc., USA

Gut health plays a central role in poultry performance

Healthy Gut = **Healthy Animal =**Optimal Performance

"The four pillars of **gut health**"

Chalvon-Demersay et al. 2021

Necrotic enteritis (NE) compromises poultry gut health

Impact on gut health

- Impaired intestinal integrity & barrier function
- Bacterial translocation
- Dysbiosis
- Increased immune & inflammatory responses
- Reduced nutrient digestibility & absorption

Impact on productivity & food safety

- Poor growth rate & increased FCR
- Higher mortality
- Significant economic loss (\$5 cents/bird globally)
- Increased contamination risk of foodborne pathogens
- Lower sustainability metrics

MOOTRAL

Novel polyphenol extracts (IQV10-3) as a natural nutritional solution for improving gut health

- Polyphenols are potential natural alternative to in-feed antibiotics due to their functional effects; however, they are unstable and highly prone to degradation
- **IQV10-3:** a unique blend of polyphenol-rich extracts from pomegranate bark and green tea; uniquely stabilized and pre-activated in a proprietary process; water-based formulation
- Stable during transportation and storage until their deliver to the animals' guts
- Mimic plants' evolutionary defense mechanism

Mode of action of IQV10-3 in improving gut health

HYPOTHESIS

Supplementary **IQV10-3** would exert positive effects on gut health and attenuate the negative impacts of **NE** on broiler performance

OBJECTIVE

To evaluate the effects of supplementing proprietary **IQV10-3** without or with a coccidiostat on the performance of broilers challenged with **NE**

MATERIALS AND METHODS

EXPERIMENTAL DESIGN

Birds: 400-day-old male broiler (Cobb 500)

Treatments: 5 groups (10 cages/group; 8 birds/cage)

Duration: 28 days

Feed: Starter feed (d 0 – 13), grower feed (d 14 – 28).

NE model: Chickens were challenged with coccidiosis and *C. perfringens* to induce NE

No.	Code	Treatment	Coccidial challenge ¹	<i>C. perfringens</i> challenge ²
1	PC	None	D14	D19 - D21
2	IQVA	IQV10-3 Dose A (0.8% on d 0 - 2, 0.2% on d 3 - 28)	D14	D19 - D21
3	IQVA+Co	IQV10-3 Dose A + 125 ppm amprolium ³ in feed d 13 – 21	D14	D19 - D21
4	IQVB	IQV10-3 Dose B (0.8% on d 0 - 2, 0.4% on d 3 - 10, 0.2% on d 11 - 28)	D14	D19 - D21
5	IQVB+Co	IQV10-3 Dose B + 125 ppm amprolium in feed d 13 – 21	D14	D19 - D21

¹5000 oocysts of *Eimeria maxima* per bird

² 10⁸ CFU/ml; ³ Coccidiostat

PARAMETERS MEASURED & STATISTICAL ANALYSIS

Starter feed			Grower feed						
d 0		d 13	d 14		d 19	d 20	d 21		d 28
START			Cocci		C. perfringens			END	
		Challenge phase	Challenge phase						
		Challenge + recove	Challenge + recovery phase						

- Feed intake, body weight gain and FCR during the challenge phase (d 13- 21) and challenge+recovery phase (d 13 28)
- % NE Mortality on d 0 28
- NE Lesion Scores on d 21 (3 birds/cage)
- Intestinal permeability: serum fluorescein isothiocyanate-dextran (FITC-d) on d 21

Contrast analysis

Contrast 1: effects of IQV10-3 doses without coccidiostat = **PC vs IQV** (IQVA+IQVB)

Contrast 2: effects of IQV10-3 doses with coccidiostat = **PC vs IQV+Co** (IQVA+Co + IQVB+Co)

• Significance at P < 0.05 and tendency at 0.05 < P ≤ 0.10

RESULTS

BROILER PERFORMANCE: CHALLENGE PHASE (d 13 – 21)

Contrast 1: PC vs IQV

Contrast 2: PC vs IQV+Co

%relative change compared to PC				
PC vs IQV PC vs IQ		PC vs IQV+Co		
FI	1.2% (<i>P</i> = 0.74)	9.9% (<i>P</i> < 0.05)		
BWG	15.6% (<i>P</i> < 0.05)	24.5% (<i>P</i> < 0.05)		
FCR	-10.9% (<i>P</i> < 0.05)	-10.8% (<i>P</i> < 0.05)		

BROILER PERFORMANCE: CHALLENGE+RECOVERY PHASE (d 13 – 28)

Contrast 1: PC vs IQV

Contrast 2: PC vs IQV+Co

IQV with coccidiostat increased FI & BWG

%relative change compared to PC			
	PC vs IQV	PC vs IQV+Co	
FI	1.9% (<i>P</i> = 0.64)	11.8% (<i>P</i> < 0.05)	
BWG	15.6% (<i>P</i> = 0.08)	24.0% (<i>P</i> < 0.05)	
FCR	-5.6% (<i>P</i> = 0.06)	-3.0% (<i>P</i> = 0.31)	

MORTALITY AND INTESTINAL HEALTH

Contrast 2: PC vs IQV+Co

%relative change compared to PC			
	PC vs IQV	PC vs IQV+Co	
NE Mortality	-83.3% (<i>P</i> < 0.05)	-100% (<i>P</i> < 0.05)	
NE LS	-58.2% (<i>P</i> < 0.05)	-60.1% (<i>P</i> < 0.05)	
FITC-d	1.7% (<i>P</i> = 0.78)	6.5% (<i>P</i> = 0.29)	

MOOTRAL

TAKE-HOME MESSAGE

• Supplementing **IQV10-3** without or with coccidiostat **attenuates** the negative impacts of **NE** on broiler performance

• The use of **IQV10-3** can support antibiotic-free programs for NE control in broiler production

NATURAL - ALTERNATIVE TO ANTIBIOTICS - EFFECTIVE SOLUTION

Thanks for your attention!

Question?

