

Effect of Creatine Monohydrate in ovo feeding (IOF) on progeny performance of young breeder flocks

Corey-Ann B Firman*, **Vivienne Inhuber**, David J Cadogan, William H E J Van Wettere, Rebecca E A Forder

Lyon, EAAP Conference 2023 28 August 2023

CREATINE ...

... INTENSIVE MUSCLE GROWTH

BROILER PRE- and POST-HATCH DEVELOPMENT

IN-OVO-FEEDING OF CREATINE FOR MORE VITAL HATCHLINGS AND BETTER POST-HATCH PERFORMANCE?

BROILER EMBRYONIC DEVELOPMENT

requirements in ovo

heat, humidity, oxygen nutrients & energy

resources in ovo

mostly water, lipids and proteins

BROILER EMBRYONIC DEVELOPMENT

Energy Metabolism

first week

small **glucose** stores help to maintain metabolism

(Moran, 2007)

embryonic d17

(Omede et al., 2017)

Yolk sa

- significant changes in the metabolism
- ingestion of amniotic fluid substrates become available to deposition as

glycogen stores

(Uni and Ferket, 2003)

metabolism needs anaerobic catabolism of glucose

dependency on glycogen stores and gluconeogenesis pathway

(Uni and Ferket, 2004)

(Ribatti et al., 2021)

embryonic development

second week

extraembryonic membranes are formed and **lipids** serve as main energy source

(De Oliveira et al., 2008)

embryonic d19

- rupture of chorioallantoic membrane (gas exchange) → decrease of O₂ availability
- fatty acid utilization becomes ineffective and does not meet the energy requirements anymore (Moran, 2007)

ENERGY RESOURCES AT HATCH

GLYCOGEN is stored mainly in the yolk sac tissue. The sharp **decrease** in glycogen levels **at hatch** and chick placement implies energy limitation in hatchlings.

CREATINE is stored mainly in the breast muscle. At chick placement, the high **creatine** levels in the breast muscle **serve** as **THE** available energy source.

CREATINE

rapidly available energy, mainly stored in muscle tissue

CREATINE serves as the direct energy source on cellular level.

In its active form phosphocreatine (PCr) it replenishes ATP from ADP.

STUDY DESIGN

400 fertile eggs

obtained from 28-week-old Ross breeder hens-

treatment at embryonic d14

- 1) CON: no IOF treatment
- 2) IOF-CON: injection of 0.75% saline solution
- 3) IOF-CrM: 8.16 mg CrM in 0.75% saline solution

at hatch

24 birds/treatment

grow-out until d42

32 birds/treatment

dissection

(e.g., liver, heart and breast and hatching muscle samples)

SUPPLEMENTARY STUDY

(repetition of this study including additional measurements)

young breeder hens, producing smaller egg yolks than older breeder hens

→ less nutrients for their progeny!

RESULTS

Performance

Hatch Rate

notable difference between treatment groups

Bodyweight Gain

no statistical difference between treatment groups, but a significant sex effect

Week

RESULTS

Tissue Analyses

Liver Creatine

CrM birds had higher (p<0.05) liver Creatine at hatch

Heart Creatine

CrM birds had higher (p<0.05) heart Creatine at hatch;

heart Creatine was higher (p<0.05) at hatch than at d42

supplementary study

No significant difference between groups in:

- Hatch weight
- Weekly weight

Dorsal and lateral view of hatching muscle in chick at embryonic day 19. Arrows indicate the large lymph glands (Smail, 1964)

CrM birds had a **heavier** (p<0.05) hatching muscle than CON and IOF-CON birds

Hatching Muscle

IN-OVO-FEEDING OF CREATINE FOR BETTER CHICK VITALITY AND POST-HATCH PERFORMANCE?

positively influenced hatch rate increased (p<0.05) liver and heart Creatine concentrations

CREATINE increased (p<0.05) hatching muscle weight

did not affect post-hatch performance

fill the puzzle

- analyses on Creatine concentration in hatching muscle and other tissues
- **behaviour data on chick vitality** min. 24h post-hatch

study with Creatine feed supplement (GAA, Creamino®) for breeder hens

THANK YOU FOR YOUR ATTENTION AND THANKS TO ...

