

THE EFFECT OF STOCKING DENSITY ON HEAT STRESS IN FATTENING PIGS

L. De Prekel¹, D. Maes¹, A. Van den Broeke², B. Ampe², M. Aluwé²

INTRODUCTION

- Regulation minimum floor area of fattening pigs
 - 0.65m²/animal: 85-110kg
 - 1.00m²/animal: >110kg
- In most farms: 0.65-0.85m²/animal where fattening pigs are often sent to slaughter at different timepoints
- Positive results of lower stocking density (SD) in thermoneutral environment:

Less risks on spread of disease ower cortisol levels ncreased feed intake and grdvothver soiling levels Less aggression at feeder

To assess the extent to which a lower stocking density can reduce heat stress in fattening pigs

TREATMENTS

(12 repeated Start-up at 1.3m²

(11 repeated Start-up^oat 1.0m² (6 repeated Start-up at 0.8m²

Barrows and gilts (Piétrain x Topigs TN70)

The treatments were randomized per compartment

Half-grid floor Pen size: 4.8m² 4 compartments

MATERIAL&MET

HODS

TRIAL PERIOD

- Parameters:
 - Physiological: observation points 1-12
 - Performance: for every period

PARAMETERS

physiological parameters

Average daily feed intake [g/day]

> Average daily gain [g/day]

Breathing frequency [bpm]

Rectal temperature [°C]

MATERIAL&MET₆ HODS

Performance parameters

TEMPERATURE HUMIDITY INDEX (THI)

							Relat	ive								
	30	35	40	45	50	55	humio	dit <mark>y₅ [</mark> 9	//////////////////////////////////////	75	80	85	90	95	100	
23	67	67	68	68	69	69	70	70	71	71	72	72	73	73	74	
24	68	68	69	70	70	71	71	72	72	73	73	74	74	75	75	
25	69	70	70	71	72	72	73	73	74	74	75	75	76	76	77	Warni
26	70	71	72	72	73	73	74	75	75	76	76	77	77	78	78	na
27	72	72	73	74	74	75	75	76	76	77	77	78	79			
28	73	74	74	75	76	76	77	77	78	78	79					5
29	74	75	76	76	77	78	78	79							82	Dang
(5^{30})	75	76	77	78	78	79					82		83		84	er
o31	77	77	78	79					82		83		84	85	85	
32	78	79				82		83			85	85	86	86	87	Creat dange
33	79				82	83		84	85	85		87	87	88	88	Great dange
34	80	81	82	83	84	84	85	86	86	87	87	88	89	89	90	
						75		79)	8	4					
				nc 1	o warni for hea stress	ng it for	warnii r heat s	ng stressfo	dan or heat	ger : stress	gr s dai for str	reat nger heat				
						(Lucas	etal 2	2000 St	- Diorro	otal 2		tt ot ol	2017)		MATE	ERIAL&MET

(Lucas et al., 2000; St-Pierre et al., 2003; Vitt et al., 2017)

HODS

STABLE CLIMATE DATA

4 compartments: 1, 2, 3 & 4 in three different batches

Artificial heating to ±30°C in all compartments

with average max THI of 78.6 per day during the heat period

High relative humidity (RH) in compartment two

- Did not drop during artificial heating
- High RH outside air (60-100%)
- Higher THI due to higher RH from

BREATHING FREQUENCY

- The SD groups did not react differently from each other on the heat load (interaction term, P=0.532)
- The heat load did influence the breathing frequency within the SD groups (P<0.001)

RESULT_o

S

RECTAL TEMPERATURE

- The SD groups did not react differently on the heat load (interaction term, P=0.126)
- The heat load did influence the rectal temperature within the SD groups (P<0.01)

\triangle PARAMETERS – CONTRAST

Δ RECTAL TEMPER

- $\Delta \mathrm{T}_{\mathrm{rectal}}$ of $\mathrm{SD}_{\mathrm{0.8}}$
- was higher than SD_{1.0} (P=0.033)
- tended to be higher than SD_{1.3} (P=0.053)

- Less able to maintain internal metabolic temperature
 - Increased radiant heat emitted from pen mates?
 - Less floor area for sensible heat loss via conduction?

AVERAGE DAILY FEED INTAKE

- The SD groups did not react differently from each other on the heat load (interaction term, P=0.258)
- The heat load did decrease ADFI within the SD groups (P<0.001)

RESULT

AVERAGE DAILY GAIN

- The SD groups did not react differently on the heat load (interaction term, P=0.758)
- The heat load decreased the ADG (P=0.001)

AVERAGE DAILY FEED INTAKE AND GAIN

TAKE HOME MESSAGES

- 1. Higher increase of rectal temperature in the highest stocking density
 - Less ways to lose heat

- 2. Reducing the number of animals per m² did not improve performance during a period of higher heat load
 - But higher daily gain of lowest stocking density group

THANK YOU FOR YOUR ATTENTION

I'm happy to answer your questions

lotte.deprekel@ugent.be

