

Heritability of dry matter intake in Norwegian Red with measures on feed intake in commercial herds

EAAP, Lyon, France 2023

Karoline A. Bakke & Bjørg Heringstad, Geno

Breeding for better lives

Background

- Geno has equipment to measure individual:
 - Roughage intake
 - Enteric methane
- Commercial dairy herds (14) + 2 research herds
- Farms with AMS and GreenFeed
- Data collection ongoing
- All cows are genotyped (~ 1,000 pr. Year)

NORWEGIAN RED

Aim

Estimate variance components and heritability of feed intake traits in Norwegian Red dairy cows

Data

- 557 Norwegian Red dairy cows
- 61,321 daily records on feed intake
- Data from January to October 2022
- Monthly feed analyses
- Concentrate data from AMS
- Individual roughage intake
- Min 8 days with data
- Logical feed intake
- Pedigree: 6,556 animals

Trait definitions

- Roughage %
- Kg roughage
- dDMI

Daily records → 1 daily phenotype per cow

- Kg Roughage = daily roughage intake in Kg
- dDMI = daily dry matter intake (roughage + concentrate) in Kg

Percentage roughage intake (daily)

Roughage % = Proportion roughage in dDMI

Interesting trait for improving proportion of gras in the diet

Phenotypic distribution of **dDMI**

dDMI

- Mean: 20 Kg
- SD: 4.35
- Min: 7
- Max: 36
- Median: 20.37
- CI 99%: 7 − 31

Model

Mixed linear animal repeatability model:

Feed intake = Herd + DIM + Pa*CAge + htd + a + pe + e

Feed intake trait: Roughage %, Kg roughage or dDMI

Fixed effects - Herd, days in milk, Parity (2, 3+) or calving age for 1st parity cows.

Random effects - Herd-testday (htd), animal genetic (a), permanent environmental effect of animal (pe), residual (e).

Variance components estimated with DMU (by Madsen & Jensen 2013) Heritability calculated as: $(\sigma_a^2 / (\sigma_a^2 + \sigma_{htd}^2 + \sigma_{pe}^2 + \sigma_e^2))$

Fixed effect solution days in milk for **dDMI**

Results variance components

Variance components and heritability for feed intake traits, SE in pharenthesis

Variance component	Kg Roughage	dDMI
Genetic σ_a^2	15.9 (4.43)	2.65 (0.69)
Permanent environment σ^{2}_{pe}	14.97 (3.62)	2.40 (0.57)
Herd testday σ^2_{htd}	44.64 (1.86)	4.28 (0.18)
Residual σ_e^2	33.95 (0.19)	5.62 (0.03)

Roughage % not significant

Heritability

	Kg Roughage	dDMI
Heritability h ²	0.15	0.18

Roughage % not significant

Breeding values for dDMI

EBV for daily dry matter intake roughage + concentrate (kg)

EBV range from from -3.32 to 3.65 (±1.2)

E

Summary

- Genetic variation for feed intake in NR cows exists
- Further research how should we define feed efficiency?
- Feed efficiency and methane
- Genetic associations to other important traits
- Data collection works!

We aim to balance climate effects, feed efficiency, production, health and fertility in a sustainable breeding goal for Norwegian Red

