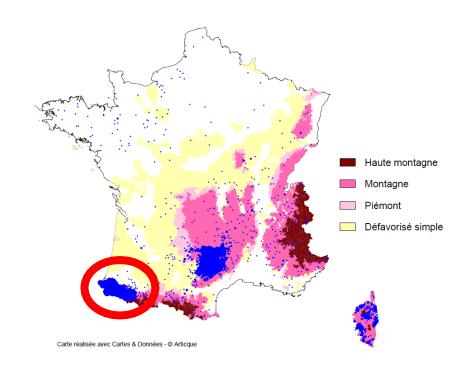


J. Raoul^{1,2}, F. Fidelle³, C. André³, M. Ben Braiek¹, S. Fabre¹, D. Buisson², I. Palhière¹

¹GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet-Tolosan, France ²Idele, CS 52637, 31321 Castanet-Tolosan, France ³CDEO, 140 Route Ahetzia, 64130 Ordiarp, France



Manech tête rouge breed

Western Pyrenees

• 34% of dairy ewes

Production of PDO cheese

74th

Counter selection of horns

Breeders want hornless animals:

Mass selection on phenotype since the 90's:

Elimination of 30% of candidates in 2022

polled

Horned

Source: Ben Braiek et al.

Counter selection of horns

Breeders want hornless animals:

Mass selection on phenotype since the 90's:

- Horned females are not selected as elite Dams
- Elimination of 30% of candidates in 2022

→ Appearance of cryptorchid lambs

Lambs are unfertile

cryptorchid

Source: Ben Braiek et al.

Genetic determinism in MTR breed

Horn/cryptorchidism phenotype according to the genotype at RXFP2 gene

Source: Ben Braiek et al.

Combination of SNP and a deletion in the RXFP2 gene

→ 3 haplotypes :

H Horn (Freq≈0.5)

Pn Poll non-crypto (Freq≈0.3)

Pc Poll crypto (Freq≈0.2)

Genotypes and phenotypes

Genotype RXFP2

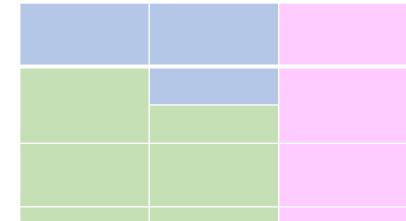
[HH] females and males are horned

[HPn] females are polled, ½ of males are horned

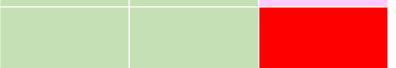
[HPc]

[PnPn]

females and males are polled


[PnPc]

[PcPc]: females and males are polled, male crypto



Poll/horn Crypto

Females Males

Genotypes and phenotypes

Genotype RXFP2		Phenotype		
		Poll/horn		Crypto
.		Females	Males	
[HH] females and males are horned				
[HPn] females are polled, ½ of males are horned				
[HPc]				
[PnPn]	females and males are polled			
[PnPc]				
[PcPc] : fema				

How to manage this haplotype?

Idea: reintroduce horned elite dams to avoid breeding cryptorchid lambs?

- → Would prevent the procreation of crypto lambs.
- → But would induce an increase in the frequency of the "horned" allele...

→ simulation study to evaluate the effect of different strategies on the genetic gain and the evolution of "horn/crypto" haplotype frequencies

Overview of the model

Full stochastic model (homemade fortran program using real 50K genotypes)

All animals and their genome are simulated

No LD between « Horn/Crypto » haploptype and SNP markers

Genetic architecture of the selected trait (h²=0.3 : rep=0.5)

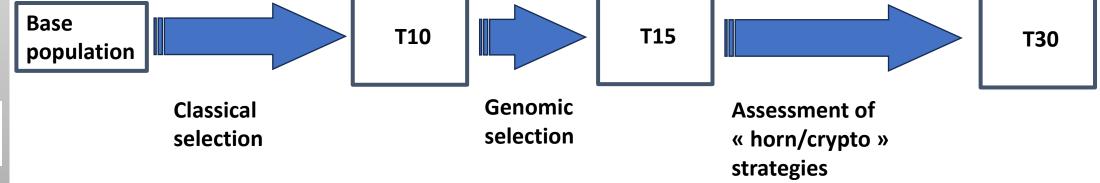
Based on 1000 QTLs randomly selected among SNP markers

QTL Effects drawn from a normal distribution

Population under selection:

50 000 ewes / 150 flocks

55 young AI males per year (375 genotyped animals) / 175 adult AI males Half of adult ewe inseminated per year


Overview of the model

Annual EBVs/GEBVs computation using Blupf90 software

Pedigree

From T10 : genotypes of AI sires born since T1

Annual Phenotypes of ewes (derive from their TBV and additional random effects)

No genotype available for ewes

30 replicates / strategy

Strategy assessed

Selection step Phenotypic/Genetic criteria

Ewe lambs

Elite dams

Elite rams (before genotyping)

Haplotype criteria (prority cull)

Elite rams (Based on the genotype)

Strategy assessed

Selection step	lection step Phenotypic/Genetic criteria		
Ewe lambs	Parental GEBVs	Polled + Parental GEBVs	
Elite dams	GEBVs	Polled + GEBVs	

Elite rams (before genotyping)

Haplotype criteria (prority cull)

Elite rams (Based on the genotype)

Strategy assessed

Selection step	Phenotypic / Genetic criteria		
Ewe lambs	Parental GEBVs	Polled + Parental GEBVs	
Elite dams	GEBVs	Polled + GEBVs	
Elite rams (before genotyping)	Parental GEBVs	Polled + Parental GEBVs	

GEBVs

Haplotype criteria (prority cull)

Elite rams (Based on the genotype)

Pc Carriers

H Carriers

No managment

=

Frequencies → starting frequencies

Freq(H) = 0.50

Freq (Pn) = 0.30

Freq (Pc) = 0.20

No managment

=

Frequencies → starting frequencies

Freq(H) = 0.50

Freq (Pn) = 0.30

Freq (Pc) = 0.20

Add criteria

=

decrease in genetic gain

-11 to -23%

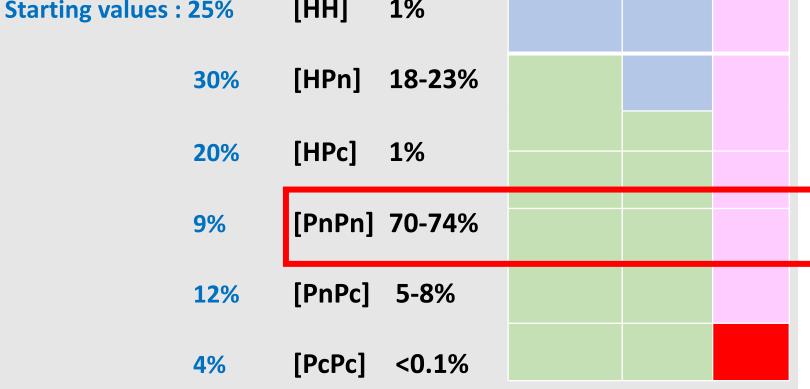
Only Phenotypic/Genetic criteria

Some strategies with a limited decrease in genetic gain but!

Either polled and crypto both increased Or

Small increase in polled (freq(H): $0.5 \rightarrow 0.4$)

Adding haplotype criteria



All strategies converged towards the similar genotypic frequencies at T30 but trajectories were different

Starting values: 25% [HH] 1%

Selection step	Phenotypic / Genetic criteria			
Ewe lambs	Parental GEBVs	Polled+ parental GEBVs		
Elite dams	GEBVs	Polled + GEBVs		
Elite rams (before genotyping)		Polled + parental GEBVs		
	Haplotype criter	ia (prority cull)		
Elite rams (Based on the genotype)		Pc Carrier	H Carriers	

Cull horned male candidates

=

High decrease in the genetic gain (-18 to -23%)

Polled males with low GEBVs were selected as long as the freq(H) was high

Selection step	Phenotypic/Genetic criteria			
Ewe lambs	Parental GEBVs	Polled+parental GEBVs		
Elite dams	GEBVs	Polled + GEBVs		
	haplotype criter	ia (prority cull)		
Elite rams (Based on the genotype)		Pc Carrier	H Carriers	

Among the last 8 strategies (-11 to -16%)

Selecting only polled females to be elite dams gave the lower decrease in genetic gain: -11 to -13%

Conclusion

- ✓ It is possible to prevent the presence of horn animals and cryptorchid lambs combining both phenotypic and genomic criteria
- ✓ Depending on the strategy, the loss of genetic gain varied from simple to double
- ✓ Combining genomic criteria on elite sires and phenotypic criteria on elite dams seems promising