

Dissimilarities in the composition of breast milk in two lines of rabbits divergently selected for intramuscular fat

Hernández, P., Ibáñez, N., Heddi, I., Martínez-Álvaro, M., Zubiri-Gaitán, A.

- Contemporaneous
- Same environmental conditions
- Same diet

DIFFERENCES ARE DUE TO GENETICS

Divergent selection for IMF in

Longissimus thoracis et lumborum (LTL)

Selection led to a correlated response in the overall adiposity, making these lines a valuable animal material to study also the genetics of obesity

Source: ASESCU

ATERNAL EFECCTS

Causal influence of the maternal phenotype on the offspring phenotype

Intrauterine environment, dam's milk production and the mothering ability

Source: ASESCU

MATERNAL EFECCTS

- The importance of maternal effects for traits (IMF) recorded in the fattening period is a consequence of the short interval of time between weaning and slaughtering
- The proportion of phenotypic variance explained by the maternal genetic effect can be up to 22% for IMF

The aim of the study is to estimate the correlated response to selection for IMF on does' milk composition

Milk samples were collected on day 15 of lactation

10th generation of selection for IMF

- Milk composition: Fat, Protein, Lactose, Urea Milko FT6000 (Foss)
- **Fatty acid** profile (GC)

Statistical analysis	
Differences between lines	$y = Xb + b \cdot LK + e$
	Line
	Sampling date (month)
	Parity order
• D _{H-L}	number of lactating kits (LK)
 HPD_{95%} 	

Rabbit program (https://github.com/VLabUPV/Rabbit)

P₀

Milk composition

	Mean	SD
Fat (%)	12.96	1.97
Protein (%)	10.18	0.63
Lactose (%)	3.18	0.29
Urea (mg/l)	603	166

Rabbit milk is characterised by a high fat and protein content and a lower lactose content

Differences between lines for milk composition

	D _{H-L}	Po
Fat (%)	0.897	0.98
Lactose (%)	-0.19	1
Protein (%)	-0.05	0.63
Urea (mg/l)	11.55	0.62

H line showed greater fat and lower lactose than the L line

Milk fatty acids

	Mean (%)	SD	D _{H-L}	P ₀
SFA	65.5	0.363	0.802	0.87
MUFA	14.6	0.267	0.196	0.64
PUFA	19.9	0.159	-0.989	1

H-L MUFA	D _{H-L}	Po
C14:1	0.021	0.97
C16:1	0.246	0.95

The two lines divergently selected for IMF content presented substantial differences in breast milk composition confirming a correlated response to selection for IMF

Dissimilarities in the composition of breast milk in two lines of rabbits divergently selected for intramuscular fat

Hernández, P., Ibáñez, N., Heddi, I., Martínez-Álvaro, M., Zubiri-Gaitán, A.

