

Genes and variants involved in resistance to paratuberculosis in Holstein and Normande cattle

V. Sorin¹, A. Boulling¹, A. Delafosse², M. Boussaha¹, C. Hozé^{1,3}, R. Guatteo⁴, C. Fourichon⁴, S. Fritz^{1,3}, D. Boichard¹ & <u>M.P. Sanchez¹</u>

¹ Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas
 ² GDS Orne, 61000 Alençon
 ³ Eliance, 75595 Paris
 ⁴ INRAE, Oniris, BIOEPAR, 44300 Nantes
 France

> Paratuberculosis in cattle

Paratuberculosis or Johne's disease

Transmissible endemic disease in ruminants due to *Mycobacterium avium subsp. paratuberculosis* (**MAP**)

Very frequent: 1/2 herds infected in Europe

Gut lesions & rapid weight losses

Strong economic impact & negative effects on animal welfare

INRAe

Genes and variants involved in resistance to paratuberculosis in Holstein and Normande cattle 29th August, 2023 / EAAP 2023, Lyon – Session 28, 42696

No efficient treatment & vaccine available

Long latency period: young animals infected, first positive tests after 2-6 years

Poor sensitivity/specificity of detection tests (ELISA blood / PCR feces)

Difficult to control MAP

Identify genes and variants affecting resistance to MAP

GWAS & meta-GWAS at the whole genome sequence level in Holstein and Normande cows

> Phenotypes & Genotypes

Cows with MAP statuses from 2 datasets

Blood serological / fecal PCR tests
PARADIGM project, Sanchez et al. GSE 52:14, 2020

Blood serological tests routinely recorded since 2015, Sanchez et al. GSE 54:67, 2022

Rigorous selection of non infected cows

Not in latency period (> 3 years-old) Exposed to MAP, from herds with at least one contemporary infected cow

Holstein		Normande
65 <i>,</i> 836	Cows with MAP statuses	31,083
4677	Incl. cows with 50k chip genotypes	4845
3277	Controls (non infected)	3578
1263	Subclinical cases	1195
137	Clinical cases	72

INRAe

> Methods & tools for GWAS and meta-GWAS

Within-breed imputations

Fimpute / Minimac

Step 1

Step 2

INRA

3414 animals of various breeds with WGS incl. 1414 Holstein and 160 Normande (RUN9 1000 BG + INRAE)

17 million variants after QC for 4677 Holstein 4845 Normande

GWAS & meta-GWAS GCTA / METAL

Within-breed GWAS: each variant tested together with a polygenic effect estimated from a 50k GRM

Meta-analyses by combining within-breed GWAS results (fixed effects method)

Significant effects if $-\log_{10}(p-value) > 7.3$

Results: heritability of resistance to paratuberculosis >

Estimated based on the 50k genomic relationship matrix in both populations

$$h^{2} = \int h^{2} dt$$

$$1^2 = 0.32$$

Moderate / medium values suggesting a genetic determinism of the host resistance to MAP

INRA

1 4 regions in each breed, two are located on chrom. **12** and **23** in both breeds

Genes and variants involved in resistance to paratuberculosis in Holstein and Normande cattle

29th August, 2023 / EAAP 2023, Lyon – Session 28, 42696

> Results: meta-GWAS

with more significant effects (except on chr. 13)

INRAe

Genes and variants involved in resistance to paratuberculosis in Holstein and Normande cattle 29th August, 2023 / EAAP 2023, Lyon – Session 28, 42696

25 27

> Definition of the QTL regions

In each region, with an **iterative procedure** based on **LD** between variants, applied in 5-Mb intervals centered around the lead variant

Single or multi QTL within a genomic region

Confidence interval for each QTL identified

Fig. 1 Iterative procedure for defining QTL and their confidence intervals

Sanchez et al. (2023) BMC Genomics, 24:338 https://doi.org/10.1186/s12864-023-09438-7

QTL identified in within-breed and meta-GWAS results

	Chr. 3	Chr. 6	Chr. 12	Chr. 13	Chr. 18	Chr. 23	Total
Normande	1	1	1	0	0	5	8
Holstein	0	0	4	1	1	3	9
Meta-GWAS	1	1	4	2	1	15	24

INRAe

Results: QTL on chr. 12

0.4 0.2

Unknown

Meta-GWAS

Results: QTL on chr. 23

MHC = complex region with many genes and a high level of polymorphism Meta-GWAS clearly reduced LD in the region but different variants / genes could be responsible for the effects observed

Genes and va

INRA

0.6 0.4 0.2

Unknown

Meta-GWAS

> Results: 3 candidate variants / genes on chr. 23

The lead variant is an intergenic variant between *SNTA1* & *CBFA2T2*

0.8 Results: QTL on chr. 3 and 6 in Normande / chr. 18 in Holstein > 0.2 Unknown

p. 14

1.0

0.6 0.4

> Results: Enrichment analyses

In meta-GWAS, identification of **799 variants** located in **92 genes** on chr. 3, 12, and 23

Enrichment analyses based on different public human databases:

	PheWeb 2019	GWAS Catalog 2019	UK Biobank GWAS v1
Bowel diseases	Celiac disease	Ulcerative colitis, Inflammatory bowel disease	Malabsorption/coeliac disease, Other diseases of the digestive system
Auto-immune diseases	Type 1 diabetes, Psoriasis	Atopic march	Adrenocortical insufficiency/Addison's disease, Psoriasis (Medication dovonex)

=> Enrichment for diseases related to paratuberculosis

INRAe

> Conclusions

This study identifies QTL for resistance to paratuberculosis from GWAS and meta-GWAS at the WGS level on 4845 Normande and 4677 Holstein cows

Overall, meta-GWAS confirm all QTL detected in each within-breed GWAS with more significant effects & suggest that most QTL could be shared between breeds

Identification of variants and genes being good functional candidates for resistance to paratuberculosis with an enrichment of ontologies related to bowel diseases

WHAT'S NEXT?

INRAe

Selection of the best functional candidate variants for validation

