Nutrient cycling and efficiency: a comparative flow analysis of meat and dairy sheep farming systems

> F. Stark, N. Amposta, W. Nasri, M. Lamarque, S. Parisot, P. Salgado & E. Gonzalez-Garcia

Context and problematic

- Sustainability of livestock farming systems is widely questioned
- Which challenge our ability to assess the expected performance of these systems
- Design innovative livestock farming systems based on agroecology principles
- Nutrient cycling as a relevant option to meet these challenges

To what extent integrated specialized livestock farming systems be more sustainable ?

Study site: small ruminant experimental farm

La Fage Experimental Farm (INRAE)

- South of France, Aveyron, Causse du Larzac, a high French karst plateau in the south of the Massif Central
- 2 contrasting farming systems : 2 breeds with 2 different productive purposes and 2 types of livestock management
- > 100 ha of arable lands and 200 ha of rangelands

- 600 dairy ewes (Lacaune)
- Semi-intensive (indoor & summer grazing)
- AOC Roquefort system (cheese)

- 400 meat ewes (Romane)
- **Extensive** (fully **outdoor**, rangeland)
- Highly prolific breed; natural suckling system

Method: Flow analysis and performances evaluation

Method: Flow conceptualization

Method: Flow modelling

- Quantification of each flows : monitoring data, experimental data, bibliography
- Device selection: nitrogen (relevant for both livestock and crops)
- **Temporal scale:** annual data over a 5-year period

2019 (annual average), nitrogen (kg/year)

ل م	Inputs	Dairy ewes	Meat ewes	Arable land	Rangeland	Forages	Effluent
Dairy ewes	5,927	0	0	936	0	8,328	0
Meat ewes	884	0	0	384	1,818	1,300	0
Arable land	12,749	380	168	0	0	46	2,002
Rangeland	6,110	0	1,632	0	0	0	0
Forages	0	0	0	9,154	0	0	0
Effluent	0	4,244	57	0	0	780	0
Outputs	0	6,503	3,162	0	0	0	0
Losses	0	1,213	373	2,122	1,527	0	517

La Fage, 2019, Kg N.year⁻¹

لـ	Inputs	Dairy ewes	Meat ewes	Arable land	Rangeland	Forages	Effluent
Dairy ewes	5,927	0	0	936	0	8,328	0
Meat ewes	884	0	0	384	1,818	1,300	0
Arable land	12,749	380	168	0	0	46	2,002
Rangeland	6,110	0	1,632	0	0	0	0
Forages	0	0	0	9,154	0	0	0
Effluent	0	4,244	57	0	0	780	0
Outputs	0	6,503	3,162	0	0	0	0
Losses	0	1,213	373	2,122	1,527	0	517

31,226 Kg N.year⁻¹

9,665 Kg N.year⁻¹

5,751 Kg N.year⁻¹

25,671 Kg N.year⁻¹

La Fage, 2019, Kg N.year⁻¹

Efficiency of 77% (without natural inputs)

لے	Inputs	Dairy ewes	Meat ewes	Arable land	Rangeland	Forages	Effluent
Dairy ewes	5,927	0	0	936	0	8,328	0
Meat ewes	884	0	0	384	1,818	1,300	0
Arable land	12,749	380	168	0	0	46	2,002
Rangeland	6,110	0	1,632	0	0	0	0
Forages	0	0	0	9,154	0	0	0
Effluent	0	4,244	57	0	0	780	0
Outputs	0	6,503	3,162	0	0	0	0
Losses	0	1,213	373	2,122	1,527	0	517

5,751 Kg N.year⁻¹

25,671 Kg N.year⁻¹

La Fage, 2019, Kg N.year⁻¹

Productivity :

- Losses account for 60 % of overall outputs
- Milk represents only 1/3 of dairy ewes valuable outputs (N equivalent) although this is the main production expected

Conclusion & perspective

- Feed autonomy remains a major challenge
- Allocation of production factors must be considered in relation to the performance of each flock
- Reduction of losses can be improved, mainly by a better use of manure among other management innovations

Conclusion & perspective

- Feed autonomy remains a major challenge
- Allocation of production factors must be considered in relation to the performance of each herd
- Reduction of losses can be improved, mainly by a better use of manure, among other management innovations
- identify and select agroecological innovations based on previous experiments (co-design process with stakeholders)
- simulate the impact of these innovations on the systems studied (simulation through modelling)
- test and implement/discuss innovations with stakeholders (trials/training)

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 862555. The project TRUSTFARM was carried out under the ERA-Net Cofund FOSC (Grant N° 862555), built upon and supported by the experience from the Joint Programming Initiative on Agriculture, Food Security & Climate Change (FACCE-JPI) and the ERA-Net Cofund LEAP-Agri

Nutrient cycling and efficiency: a comparative flow analysis of meat and dairy sheep farming systems

F. Stark, N. Amposta, W. Nasri, M. Lamarque, S. Parisot, P. Salgado & E. Gonzalez-Garcia

cirad INRA