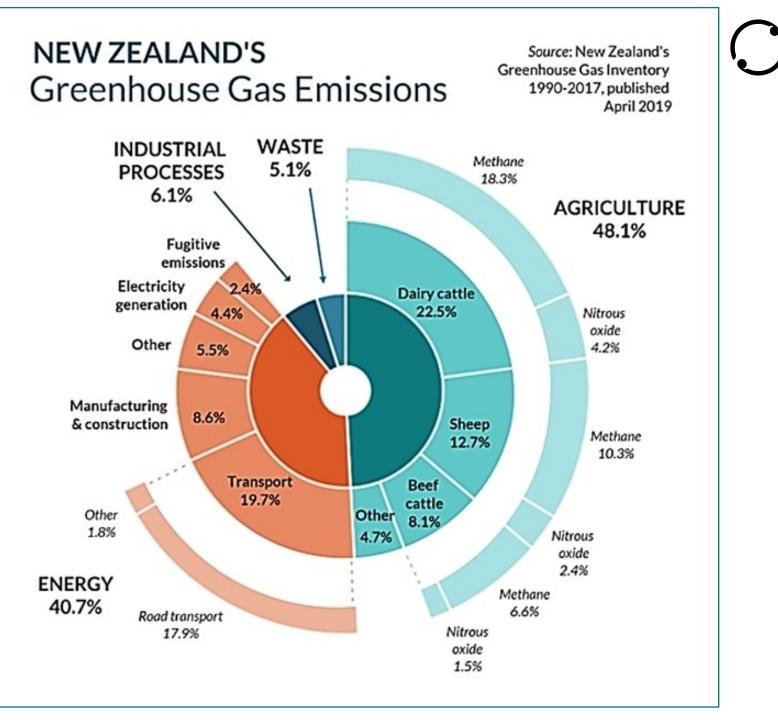


Future scenarios for livestock agriculture in New Zealand

Clemence Vannier, Thomas Cochrane, Larry Bellamy, Tipene Merritt, Herve Quenol, Baptiste Hamon

74th Joint International Congress on Animal Science – August 2023 – Lyon, France

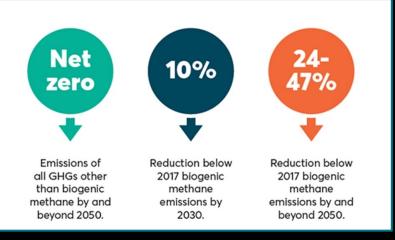
AMBASSADE DE FRANCE EN NOUVELLE-ZÉLANDE, AUX ÎLES COOK ET AUX SAMOA Liberté Égalité Fraternité UNIVERSITY OF CANTERBURY Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

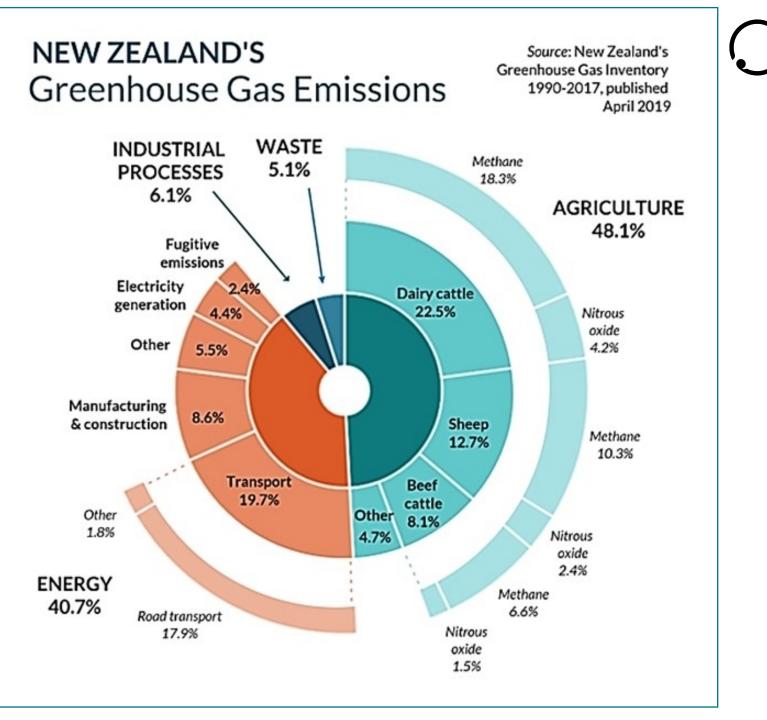

National SCIENCE Challenges

> OUR LAND AND WATER

Toitü te Whenua, Toiora te Wai

1. Introduction Context

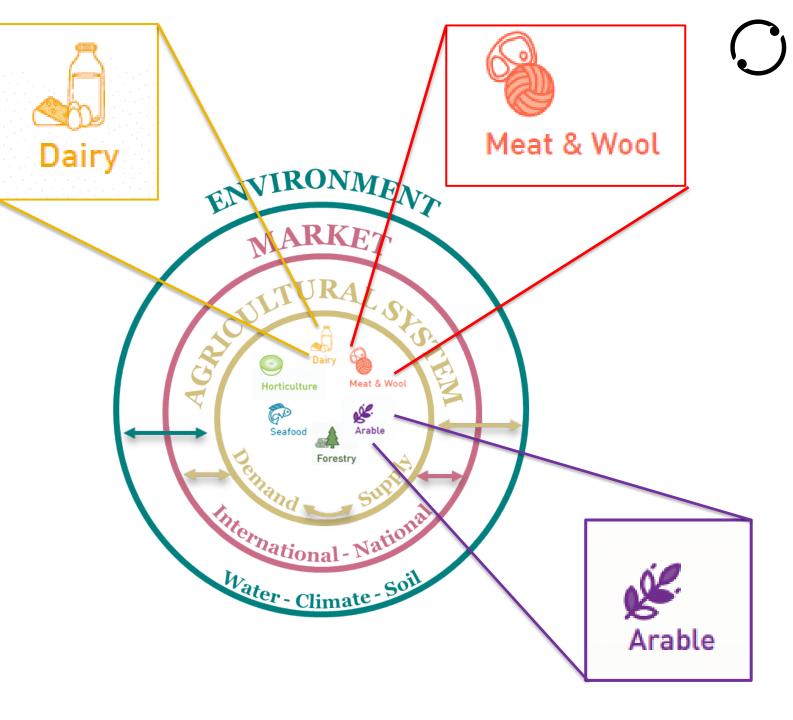

- 48% of GHG emissions come from agriculture:
 - 35% from methane
 - 8% from nitrous oxide
 - 5% from gas/electricity on farm + non-livestock sectors

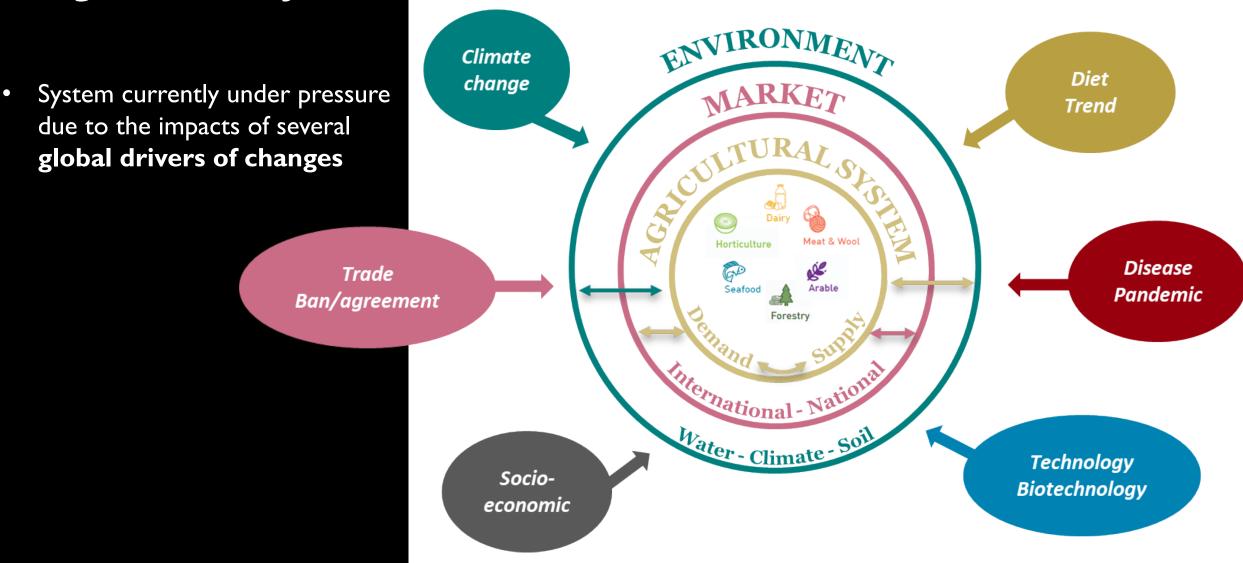


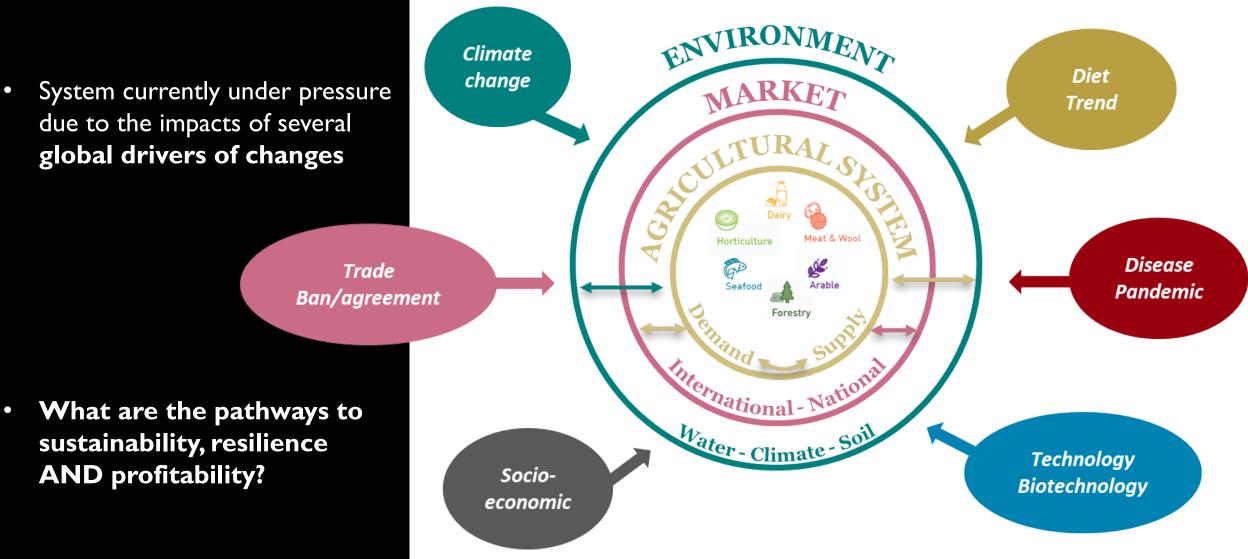
1. Introduction Context

- 48% of GHG emissions come from agriculture:
 - 35% from methane
 - 8% from nitrous oxide
 - 5% from gas/electricity on farm + non-livestock sectors

→ Zero Carbon Amendment Act (2019)

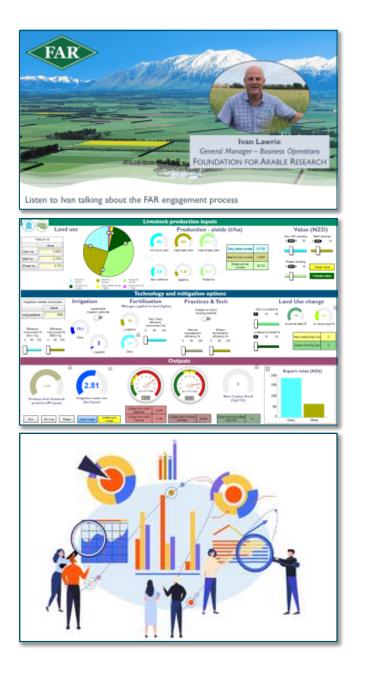





- New Zealand agricultural system framework is based on six main sectors.
- 82% of the production is exported, generating NZ\$56.2 billion in export revenue (11% of GDP, 14% of employment).
- Government profitability goal of +2% to +4% each year

- Dairy sector is worth NZ\$22billion
- \rightarrow pillar sector for NZ economy
- Meat and wool sector is
 NZ\$12billion → stable
- Arable sector is worth NZ\$1 billion
- NZ\$260 million exported (seeds)
- Pillar sector: produce all the grains for human and animal consumptions
- → the arable sector has the opportunity to grow by increasing co-benefits with livestock sectors and help NZ to adapt to climate change

1. Introduction Aim


- To inform on the impacts and opportunities arising from a range of changes and disruptors
- To develop scenarios at the national scale

→ for assessing pathways and interventions to underpin strategy initiatives related to livestock and arable agriculture.

1. Introduction Aim

- To inform on the impacts and opportunities arising from a range of changes and disruptors
- To develop scenarios at the national scale

→ for assessing pathways and interventions to underpin strategy initiatives related to livestock and arable agriculture.

Objectives

I. Engage with sectoral stakeholders to define priorities, challenges, scenarios

2. Develop a Decision Support Tool to simulate scenarios

3.Assess the impacts and opportunities arising from each scenario

2.Methods Scenarios

Scenario I

Land use change: Co-benefits from arable and forestry into livestock systems

- Irrigated pastures released to arable production (forages and high value crops)
- Beef&Sheep land transformed for Carbon farming.

Scenario 2

Mitigating climate change: Changing animal diets

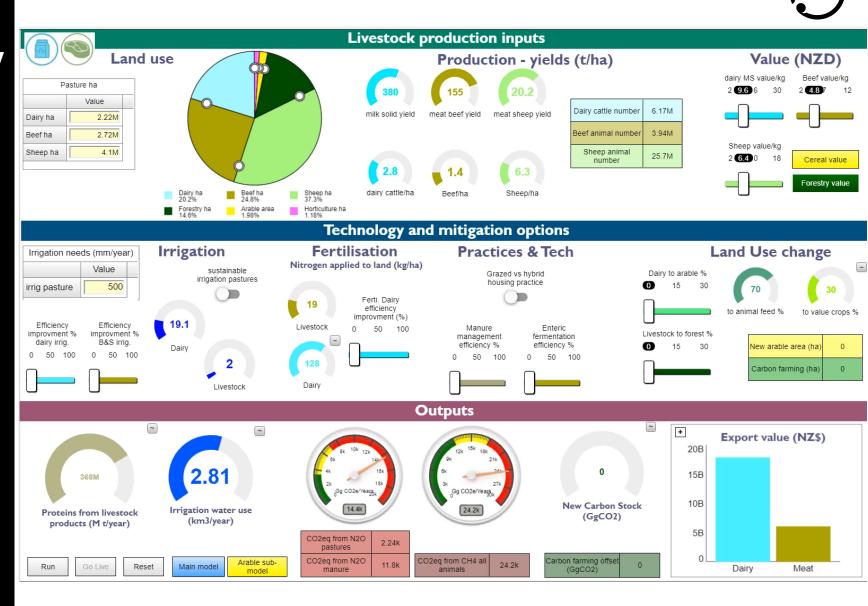
Scenario 3

Food security: Increasing wheat production to gain self sufficiency

- Alternative forages and grain diet introduced significantly in the system
- reduce CH₄ and N₂O emissions from livestock

- In 2021, 250,000 tonnes shortfall for consumption in NZ.
- Objective to reach 700,000 tonnes produced to gain self-sufficiency.

2.Methods Decision Support Tool


- Designed to test scenarios
- Help reaching government goal as well as profitable production
- Systems dynamic model
- Implemented in Stella Architect
- Display a national quantitative picture
- A multisectoral main model linked with arable and livestock sub-models
- Model is setup with 2021 values (national dataset, FAOSTAT)
- Validated with 2010 and 2019 dataset

2.Methods Decision Support Tool

- Designed to test disruptive scenarios
- Help reaching government goal as well as profitable production
- Systems dynamic model
- Implemented in Stella Architect
- Display a national quantitative picture
- A multisectoral main model linked with arable and livestock sub-models
- Model is setup with 2021 values (national dataset, FAOSTAT)
- Validated with 2010 and 2019 dataset

https://exchange.iseesystems.com/public/clemence/future-ag

- → Two main levers tested to reduce and offset emissions:
- Irrigated pastures released to arable production (forages and high value crops)
- Beef&Sheep land transformed for Carbon farming.
- \rightarrow How much need to be change for how much benefits or trade-offs?
- Co-benefits of arable and forestry growth:
- Half or less irrigation water used
- Offset large amount of CO2 but ecosystem services should be assessed (biodiversity, soil erosions)
- Release land create new arable opportunities (peas and fava beans?)
- Increase forage production, reduce CH4 emissions

\bigcirc

→ Dairy pasture change to arable crops

	Baseline	1% Dairy land	5% Dairy land	10% Dairy land
Dairy area	2,200,000	22,000	110,000	220,000
New area	2,200,000	2,178,000	2,100,000	1,980,000
Animal pressure	2.8	2.8	2.9	3
10% herd reduction – new pressure	2.5	2.65	2.65	2.8

- Increase food security, wheat self-sufficiency
- Animal alternative feed (forages, small grains)

→ Beef&Sheep land change to Carbon farming

1400	
1200	
1000	
800	
600	
400	
200	
0	
	$1 \hspace{.1in} 3 \hspace{.1in} 5 \hspace{.1in} 7 \hspace{.1in} 9 \hspace{.1in} 1113 \hspace{.1in} 1517 \hspace{.1in} 192123 \hspace{.1in} 2527 \hspace{.1in} 2931 \hspace{.1in} 3335 \hspace{.1in} 3739 \hspace{.1in} 4143 \hspace{.1in} 4547 \hspace{.1in} 4951$
	Pinus radiata Indigenous forest

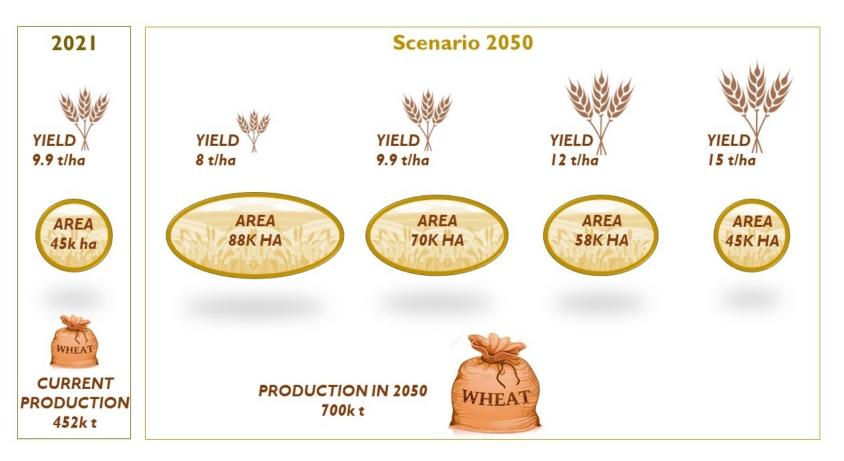
Baseline: 6,820,000	I% B&S land	5% B&S land	l 0% B&S land
Area	68,200	341,000	682,000
Pinus radiata MtCO2 30years	51.7	258.5	517
Indigenous forest MtCO2 30years	17.5	87.6	175

 \rightarrow Two main levers tested to reduce emissions:

- a decrease of herd numbers by 5, 10 and 15% and a significant introduction of alternative animal diet by 10, 20 and 30%.
- In best combinations, reduction by 21% to 23% of emissions from N_2O and by 30% from CH₄.

Co-benefits of alternative forages:

- high quality feed over the time of the year where ryegrass productivity is limited;
- relative low cost option compared to purchasing supplementary feed;
- can be used in pasture based rotation providing soil fertility and re-establishing high yielding grass.


Alternative feed (% of overall feed) Herd (head)	0%	10%	20%	30%	
Current 6.2m dairy cattle 3.9m beefs	24.2k Gg CO2 eq from methane I 4.4 Gg CO2eq from nitrogen	22.5k 13.3k	20.8k 12.2k	19.2k 12.2k	
-5% 5.89m dairy cattle 3.7m beefs	23.7k I 4k	22k 12.9k	20.3k 11.8k	18.7k 11.9k	
-10% 5.58m dairy cattle 3.51m beefs	23.4k 13.2k	20.7k 12.2k	19.2k 11.2k	17.7k 11.3k	
-15% 5.27m dairy cattle 3.31m beefs	21.2k 12.7k	19.9k 11.8k	18.4k 10.9k	17k 11k	
In red, unmet goal (CH $_4$), in orange, 2030 met goal, in green, 2050					

goal met.

 \rightarrow Two main levers, surface of production and potential yields.

- Keeping the same yield, i.e. 9.9 t/ha, or improving it to 12 t/ha
- require to grow an extra 13k to 25k hectares of wheat.
- → Irrigation water used, if current standards are applied (i.e. a mean of 295 mm/year for wheat production) could halve pasture irrigation in the Canterbury region.
- \rightarrow CO ₂ equivalent emissions from Nitrogen is a third of Dairy pasture application.

5.Conclusions and next steps

- DST + participatory approach has improved stakeholder's engagement
- DST has a great potential for land planning and policy formulation

Future developments:

- → more sectors and industry stakeholders on board
- ightarrow downscaling (regional) options
- → robust spatial approach for adaptation strategy development

5.Conclusions and next steps

- DST + participatory approach has improved stakeholder's engagement
- DST has a great potential for land planning and policy formulation

Future developments:

- → more sectors and industry stakeholders on board
- \rightarrow downscaling (regional) options
- → robust spatial approach for adaptation strategy development

Dissemination

 \bigcirc

Story maps

The future of New Zealand agriculture: Modelling pathways to sustainability, resilience, and profitability in 2025.

Future scenarios for arable agriculture

Scientific publications

- Vannier C., Cochrane T.A., Zawar Reza P., Bellamy L., 2022: "An Analysis of Agricultural Systems Modelling Approaches and Examples to Support Future Policy Development under Disruptive Changes in New Zealand". Applied Sciences, 12, 2746. https://doi.org/10.3390/app12052746
- Vannier, C.; Cochrane, T.A.; Zawar-Reza, P.; Bellamy, L. 2022: "Development of a Systems Model for Assessing Pathways to Resilient, Sustainable, and Profitable Agriculture in New Zealand". *Land* 2022, 11, 2334.

https://doi.org/10.3390/land11122334

 Vannier C., Lawrie I., Bellamy L., Cochrane T.A.:" Future scenarios for arable agriculture: Exploring pathways and interventions for increasing the profitability, resilience, and sustainability of arable agriculture in Aotearoa 2050", New Zealand Journal of Agricultural Research, in prep.

Contact: Vannierc@landcareresearch.co.nz

AMBASSADE DE FRANCE EN NOUVELLE-ZÉLANDE, AUX ÎLES COOK ET AUX SAMOA

Liberté Égalité Fraternité UNIVERSITY OF CANTERBURY Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

National SCIENCE Challenges

OUR LAND AND WATER

Toitü te Whenua, Toiora te Wai