

Effect of dietary protein source and Saccharina Iatissima on milk fatty acid profiles and bromoform

<u>Bing Wang^{1,2}</u>, Sabrina Ormston², Natalia Płatosz^{2,3}, Jane K. Parker⁴, Nanbing Qin², David J. Humphries², Ásta H. Pétursdóttir⁵, Anni Halmemies-Beauchet-Filleau⁶, Darren T. Juniper², <u>Sokratis Stergiadis^{2*}</u>

1 China Agricultural University, College of Animal Science and Technology, Beijing, China 2 University of Reading, School of Agriculture, Policy and Development, Reading RG6 6EU, United Kingdom 3 Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn 10-748, Poland 4 University of Reading, Department of Food and Nutritional Sciences, Reading RG6 6DZ, United Kingdom 5 Matís, Vínlandsleið 12, Reykjavík, 113, Iceland 6 University of Helsinki, Department of Agricultural Sciences, Helsinki, FI-00014, Finland

<u>b.wang6@reading.ac.uk</u> <u>s.stergiadis@reading.ac.u</u>

Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT 📈

- Rapeseed meal (RSM)
- Wheat distillers' grains

- the reduction of use of pesticides in the UK and EU :threats in rapeseed yields in the UK and European Union
- rapeseed varieties are also high in glucosinolates: posing a risk to food safety
- by-products of the ethanol industry, commonly used as a feed ingredient in dairy cow diets
- at high inclusion levels to up to 22.5% of diet dry matter without affecting dry matter intake and milk yield

INTRODUCTION

 sustainability of livestock production and climate change

diet is the most influential driver of milk fatty acid

algae (Schizochytrium sp.) supplementation (43.0 g/kg of dry matter intake), provided via a rumen fistula, increased concentrations of t10 C18:1, VA, RA, t9c11 CLA, and DHA

Boeckaert et al., 2008, J Dairy Sci 91:4714-4727

Macroalgae/seaweed

contains bromoform that have been shown to reduce methane emissions

 improvements in feed utilization efficiency

high concentrations of specific macrominerals a trace elements such as iodine, iron, and finc

INTRODUCTION

Objectives

Understand the effect, and interaction of, wheat distillers' grains (WDG) and *Saccharina latissima* on milk quality and safety

- Investigate the effect of substituting RSM with WDG as a protein source in dairy rations, including *Saccharina latissima* as a supplement, as well as the potential interaction between these two feeding practices on the FA profiles of milk.
- explore the extent of the transfer of bromoform from feed to milk, to ensure that feeding S. latissima at the given amounts would not pose any threats to food safety.

MATERIALS AND METHODS

- ✓ 16 multiparous Holstein cows (35 kg/d)
- ✓ 4×4 Latin square change-over design: 4-week experimental periods.

RESULTS

The fatty acid composition and bromoform concentrations of the experimental diets

	Seaw	veed	Protein	source		S				
Parameters	С	S	WDG	RSM		C-WDG	C-RSM	S-WDG	S-RSM	
Fatty acid profile (g/kg diet dry matter)										
C16:0	4.10	4.13	4.48	3.75		4.46	3.75	4.50	3.75	
C18:1 c9 (OA)	2.08	2.09	1.96	2.21		1.94	2.22	1.99	2.20	
C18:2 c9c12 (LA)	4.59	4.63	5.47	3.75		5.43	3.76	5.51	3.75	
C18:3 c9c12c15 (ALA)	6.69	6.68	6.72	6.65		6.76	6.63	6.69	6.67	
Total fatty acids	21.1	21.2	21.2	21.2		21.1	21.2	21.2	21.1	
Bromoform (µg/kg)	48.6	50.4	51.6	47.4		50.7	46.5	52.6	48.3	

University of Milk Individual fatty acids											
💎 Reading		profiles									
		e									
(g/kg total FA)	С	S	SEM	p-value	WDG	RSM	SEM	p-value			
C12:0	36.3	37.1	0.99	0.388	35.9	37.5	0.99	0.045			
C14:0	118	120	2.5	0.315	117	121	2.5	0.022			
C16:0	367	371	7.9	0.494	362	376	7.9	0.007			
C18:0	80.9	78.4	2.48	0.242	82.8	76.4	2.48	0.005			
OA (C18:1 c9)	161	158	5.0	0.414	163	155	5.0	0.030			
VA (C18:1 t11)	8.00	8.15	0.533	0.647	8.71	7.45	0.533	<0.001			
LA (C18:2 c9c12)	12.6	12.2	0.49	0.240	14.1	10.8	0.49	<0.001			
RA (CLA9, C18:2 c9t11)	4.62	4.63	0.403	0.927	4.91	4.35	0.403	<0.001			
ALA	4.31	4.32	0.302	0.874	4.45	4.18	0.302	0.012			
EPA	0.49	0.47	0.029	0.455	0.48	0.49	0.029	0.529			
DPA	0.72	0.70	0.048	0.247	0.72	0.70	0.048	0.461			
DHA	0.04	0.04	0.005	0.191	0.04	0.04	0.005	0.060			

Group FA

Human health related indices

FA groups (g/kg total FA)	С	S	SEM	р	WDG	RSM	SEM	р
SFA	733	737	6.3	0.412	729	741	6.3	0.006
MUFA	232	229	5.5	0.456	235	227	5.5	0.044
PUFA	34.5	33.9	0.95	0.262	36.3	32.0	0.95	<0.001
n-3	8.58	8.51	0.373	0.678	8.60	8.49	0.373	0.535
n-6	16.1	15.6	0.60	0.177	17.6	14.1	0.60	<0.001
n-6:n-3 ratio	18.9	18.6	1.02	0.507	20.6	16.9	1.02	<0.001
trans FA	30.5	29.9	0.66	0.259	30.9	29.5	0.66	0.013
trans FA (exc. VA)	30.2	29.6	0.65	0.277	30.6	29.1	0.65	0.010
AI	33.3	34.1	1.04	0.301	32.4	35.0	1.04	0.002
ті	36.9	37.5	1.13	0.417	36.2	38.1	1.13	0.019

•Atherogenicity index = (C12:0 + (4 × C14:0) + C16:0) / (MUFA + PUFA), as described in Średnicka-Tober et al. (2016).

•Thrombogenicity index= (C14:0 + C16:0 + C18:0) / (0.5 × MUFA) + (0.5 × n-6) + (3×n-3) + (n-3:n-6) as described in Średnicka-Tober et al. (2016).

No significant difference among them

Transfer rate

U	С	S	SEM	р	WDG	RSM	SEM	р
Linoleic acid								
Intake (g/d)	83.5	83.2	3.43	0.722	98.4	68.4	3.43	<0.001
Output (g/d)	11.4	10.9	0.78	0.192	12.3	10.0	0.78	<0.001
Transfer rate (%								
intake)	14.0	13.3	1.12	0.157	12.5	14.8	1.12	<0.001
α-linolenic acid								
Intake (g/d)	124	122	10.4	0.535	123	123	10.4	0.988
Output (g/d)	3.93	3.89	0.456	0.821	3.94	3.87	0.456	0.606
Transfer rate (%								
intake)	3.26	3.18	0.346	0.461	3.25	3.19	0.346	0.605
Bromoform								
Intake (µg/d)	818.7	821.9	96.03	0.981	847.9	792.7	96.03	0.686
Output (µg/d)	26.9	28.2	4.71	0.850	27.7	27.4	4.71	0.960
Transfer rate (%								
intake)	4.56	4.44	0.780	0.919	4.22	4.78	0.780	0.611

- Feeding WDG to dairy cows improved the milk FA profiles
- Increasing the concentrations of the nutritionally beneficial polyunsaturated

fatty acids, rumenic acid, linoleic acid and α -linolenic acid

- Reducing the concentration of the nutritionally undesirable saturated fatty acids.
- Feeding *S. latissima* at 35.7 g/cow/d does not affect milk fatty acid profiles

and does not pose any risks around bromoform contamination of milk

ACKNOWLEDGMENTS

• University of Reading

• China Agricultural University

EIT Food (the innovation community on Food of the European Institute of Innovation

and Technology)

Co-funded by the European Union

THANKS FOR YOUR LISTENING

<u>China Agricultural University : wangb@cau.edu.cn</u> <u>University of Reading: b.wang6@reading.ac.uk</u>