

Optimal gut function in monogastric livestock

Prophybiotics, a novel approach for *in-ovo* gut microbiome reprogramming of broilers

Ramesha N. Wishna-Kadawarage¹, Rita M. Hickey² and Maria Siwek¹

¹Bydgoszcz University of Science and Technology, Poland ²Teagasc Food Research Centre, Ireland

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

Content

Broiler chicken lifespan

Background

Key events related to gut health happening during embryonic development

- Development of immune system
- Development of gastrointestinal tract
- Development of gut microbiome

ESR 3 project

3

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

EAAP Annual Meeting, Lyon 31st August 2023

Safe food

Screening for bioactives (In-vitro)

+

Probiotics

Phytobiotics

Prophybiotics

Probiotics

Plant extracts

Research questions

- What is the **best plant extract** to be used in combination with the probiotics and at what dose?
- What is the **best probiotic** in terms of *in-vitro* **antipathogenic** activity?
- Does *in-ovo* application of **prophybiotics** adversely affect the **hatchability and quality of chicks**?

Objectives:

- To determine effects of supplementation of different plant extracts in variable doses on *in-vitro* growth of probiotics
- To determine anti-Salmonella and anti-Campylobacter effects of probiotics *in-vitro*
- To determine the effects of *in-ovo* application of the selected pro/prophybiotic on the hatchability and chick quality parameters

Materials and Methods

Probiotic strains:

(JHJ Sp Zo.o, Poland)

- 1. Lactiplantibacillus plantarum
- 2. Lacticaseibacillus casei
- 3. Limosilactobacillus reuteri
- 4. Lacticaseibacillus rhamnosus
- 5. Leuconostoc mesenteroides
- 6. Pediococcus pentosaceus

Positive control: *Lactococcus lactis*

Plant supplements:

Aqueous extracts of

- 1. Turmeric
- 2. Green tea
- 3. Garlic

Pathogenic strains:

- 1. Salmonella typhimurium (DPC6463)
- 2. Salmonella enterica subsp. Enterica (ATCC 14028)
- 3. Salmonella braenderup (NRL-IE-22)
- 4. *Campylobacter jejuni* (DVI-SC181)

Materials and Methods

Results (What's the best probiotic?)

Anti-Salmonella

Spot overlay assays

Probiotics

LP

LRh

Inhibition of *S. typhimurium* in probiotic spot overlay assay

LC

LM

PC

LR

PP

PC: *Lactococcus lactis* LP: Lactiplantibacillus plantarum LC: Lacticaseibacillus casei LR: Limosilactobacillus reuteri LRh: Lacticaseibacillus rhamnosus LM: Leuconostoc mesenteroides PP: Pediococcus pentosaceus

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

EAAP Annual Meeting, Lyon 31st August 2023

Results (What's the best probiotic?) Anti-*Salmonella*

Well diffusion Assays

Co-aggregation Assay

LRh: Lacticaseibacillus rhamnosus LM: Leuconostoc mesenteroides PP: Pediococcus pentosaceus PC: Lactococcus lactis

8

Results (What's the best probiotic?) Anti-*Salmonella*

Co-culture Assay

C-MRS: Control medium LRh: Lacticaseibacillus rhamnosus LM: Leuconostoc mesenteroides PP: Pediococcus

pentosaceus

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

Results (What's the best probiotic?) Anti-*Campylobacter*

LP LC LR LR PP

Anti-*Campylobacter* well diffusion assay

PC: Lactococcus lactis LP: Lactiplantibacillus plantarum LC: Lacticaseibacillus casei LR: Limosilactobacillus reuteri LRh: Lacticaseibacillus rhamnosus LM: Leuconostoc mesenteroides PP: Pediococcus pentosaceus

* Best probiotic selected: *Leuconostoc mesenteroides*

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

EAAP Annual Meeting, Lyon 31st August 2023

Results (What's the best plant extract?)

Growth curve assays: *Leuconostoc mesenteroides*

https://doi.org/10.1007/s10123-023-

Home > International Microbiology > Article

Research | Open Access | Published: 22 August 2023 | (2023)

In-vitro screening of compatible synbiotics and (introducing) "prophybiotics" as a tool to improve gut health

International Microbiology

- * Best plant extracts for *L. mesenteroides*:
- Turmeric (0.1% and 0.06%)
- Garlic (0.5%)

Results (What's the best Prophybiotic?)

Prophybiotics = Leuconostoc mesenteroides + Plant extracts

Salmonella counts in co-culture with prophybiotics

pH of the co-culture with prophybiotics

* Selected prophybiotic: Leuconostoc mesenteroides + Garlic (0.5%)

Results (*In-vivo* implementation)

Chick quality (Pasgar score)

NC: Negative control (No *in-ovo* injection)
PC: Positive control (*In-ovo* injection with physiological saline - 0.2μl/egg)
LM: *In-ovo* injection with 10⁶ CFU of *L. mesenterodies* (0.2μl/egg)
LM_G: *In-ovo* injection with 10⁶ CFU of *L. mesenterodies* + 0.5% garlic (0.2μl/egg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

Results (*In-vivo* implementation)

Chick length

19,1

NC: Negative control (No *in-ovo* injection)
 PC: Positive control (*In-ovo* injection with physiological saline - 0.2μl/egg)
 LM: *In-ovo* injection with 10⁶ CFU of *L. mesenterodies* (0.2μl/egg)
 LM_G: *In-ovo* injection with 10⁶ CFU of *L. mesenterodies* + 0.5% garlic (0.2μl/egg)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.

The selected **prophybiotic**

(*L. mesenteroides* + Garlic) displays;

Conclusions

a promising **antimicrobial potential** and

the potential to be used in an *in-ovo* application without compromising the hatchability and affecting the chick quality parameters

Further research is necessary **to validate the** *in-vivo* **effectiveness** of the protocol

THANK YOU

Do you have any questions?

Ramesha N. Wishna-Kadawarage

Bydgoszcz University of Science and Technology, Poland

ramesha.wishna-kadawarage@pbs.edu.pl

+48 723 306 547

www.monoguthealth.eu

monoguthealth

Optimal gut function in monogastric livestock

Materials and Methods

- Garlic powder (Cultivar: Thermodrome)
- Add to sterile distilled water
- Vortex: 25 seconds
- Light shaking: 8 minutes
- Still: 2 minutes
- Centrifuge at 10000 rpm: 5 minutes
- Supernatant filter sterilized by 0.22um filters
- Supplement to media at;
 - G1: 0.25% G2: 0.5%
 - G3: 1%

Preparation of Turmeric and Green tea supplements

Dissolved in MRS broth at; CUR1: 0.06%

CUR2: 0.1%

CUR3: 0.6%

Filter sterilized • by 0.22um filters

- **Dissolved in MRS** broth at; GT1: 0.06% GT2: 0.1% GT3: 0.6%
- Filter sterilized • by 0.22um filters

Spot overlay assays

Incubate at 37°C for 16 hours aerobically Measure the zone of inhibition around the spots

> EAAP Annual Meeting, Lyon 31st August 2023

Well diffusion assays – Anti-Campylobacter

Co-aggregation assay

Grow each probiotic in MRS broth media at 37°C for 20 hours aerobically)

Grow Salmonella typhimurium in BHI broth media at 37°C for 16 hours aerobically

Wash the pellet two times and re-suspend in PBS

000

0000

Centrifuge at 4000rpm for 15 minutes at 4°C Discard the supernatant

- Transfer 250µl of each probiotic suspension and 250ul of *Salmonella* suspension to each well
- Incubate at 37°C for 20 hours aerobically
- Measure the OD600 (Optical density at 600nm)

Where;

 $A_{mix} = OD_{600}$ of mixture of probiotic and *Salmonella* suspensions

 $A_{prob} = OD_{600}$ of probiotic suspension alone

 $A_{sal} = OD_{600}$ of *Salmonella* suspension alone

Co-culture assay

Co-culture assay - with plant extracts

Grow Salmonella typhimurium in Grow the probiotic in MRS broth media BHI broth media (at 37°C for 20 hours aerobically) (at 37°C for 16 hours aerobically) 100ul Salmonella culture **100** probiotic culture Prepare 1:1 mixture of double strength MRS and BHI broth media Supplement with plant extracts (in desired concentration) Grow the inoculated coculture at 37°C for 24 hours aerobically Selective enumeration of Salmonella count at different time points using Salmonella chromogen selective agar

Scientific problem

24

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955374.