

Stakeholders' views regarding new practices to control microbiomes

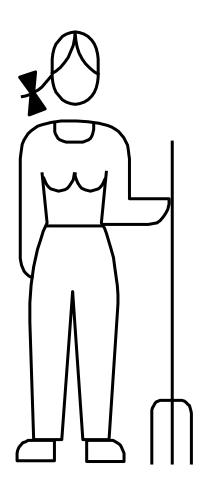
Florence Bedoin¹, Amer Ait-Sidhoum², Elise Vanbergue¹, Anna Stygar², Terhi Latvala², Áine Macken-Walsh³, Sinéad Waters³, Paul Smith³ & Jarkko Niemi²

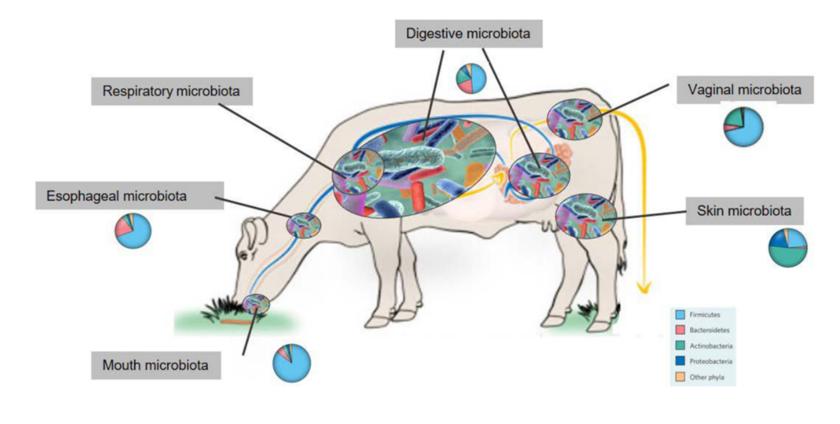
1)

2)

3)

HoloRuminant – Introduction




- We are gaining a better understanding on the role of microbes in animal production
- Scientists are developing new ways that utilize microbes to improve animal health and welfare and to mitigate environmental impacts of farming.
- These innovations must be adopted on farms in order to gain the benefits
 We need to understand better how farmers and other key actors feel about using innovative methods
- Our aim was
 - 1) to collect stakeholders' perceptions, expectations and practices to manage microbial ecosystems, and
 - 2) to explore stakeholders' willingness to accept proposed innovations.

HoloRuminant – Microbial ecosystem

INRAE Productions Animales, 2020, numéro 4

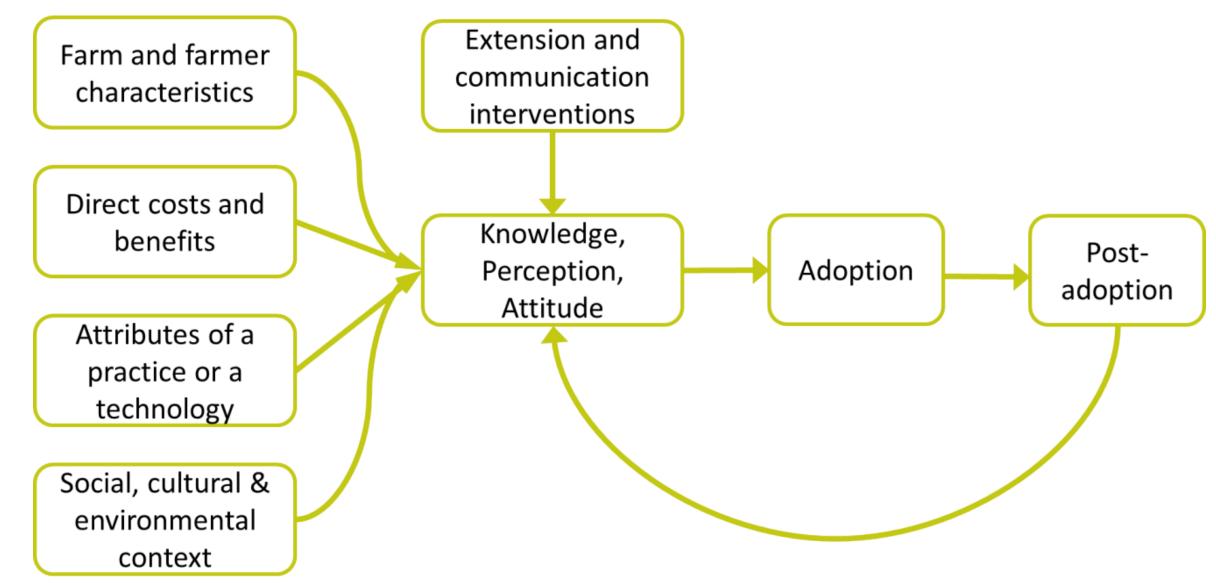
- Microbial communities (bacteria, fungi, viruses) that live on the skin and mucous membranes of ruminants.
- Microbes differ between animals.
- Important role in the defense system and maintain health.

HoloRuminant – Methods

- A review of decision-making to explain the adoption of innovations and farming practices
 - Decision-making theories and empirical results
 - Synthesis of findings
- Five nationals focus group discussions (N=43 actors; farmers, advisors and other actors) in four European countries (France, Finland, Poland, Ireland) covering the following themes:
 - 1. Identification of microbiomes on farms
 - 2. Stakeholders' knowledge
 - 3. Opinion on the role of microbiomes in production, health and GHG emissions
 - 4. Opinions on innovations relating to early life, dietary transition and environmental issues.
- European stakeholder & policy maker focus group held in Belgium
- Standard protocols for the focus groups
- Participants were recruited through national contact networks.

HoloRuminant - Photos from the discussion groups

HoloRuminant – Results



- Theories explaining the adoption on technologies, for example
 - Expected utility theory
 - Reasoned action theory and its extension, the theory of planned behavior (Ajzen, 1991; Fishbein & Ajzen, 1977)
 - Innovation diffusion theory (Everett, 1995)
- Financial aspects, knowledge and perceptions are strong drivers for the adoption of practices.
- Endogenous factors such as the perceived impact of diseases, the lack of knowledge, and technical skills can be barriers for the adoption of new practices.

HoloRuminant – An adoption framework

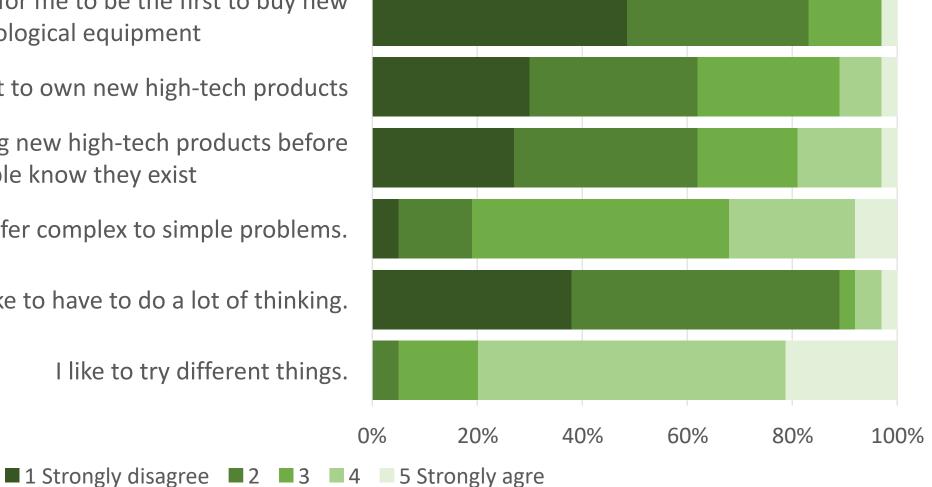
Results – Practices identified based on participants' previous knowledge

• The participants had some knowledge about microbiome and could identify at least the following practices affecting microbiome.

Ireland	France	Poland	Finland
Facilities	Building and housing	Welfare (incl. housing, feeding, health)	Management of feeding
Nutrition	Feeding		
Biosecurity	Biosecurity, Hygiene in general and at milking	Hygiene, biosecurity	Biosecurity, hygiene
	Care of young animals	Calf management	
Knowledge (Training and transfer)	Treatments of animals	Genetics	Health of adult animals
		Regional differences	Care of young animals
		Consumers' attitude	Management (leadership,
		<u>Human factor</u>	planned procedure)

Results – Some innovativeness features of focus group participants

It is very important for me to be the first to buy new technological equipment


It's great to be the first to own new high-tech products

I get excited about buying new high-tech products before other people know they exist

I prefer complex to simple problems.

I do not like to have to do a lot of thinking.

I like to try different things.

Results – The importance of early establishment of a "good" microbiome for young animals was understood well.

Birth

Weaning

Feeding

Production

Results – Barriers, enabling factors and needs

Barriers	Enabling factors	Needs			
Keeping young animals with the adults for an extended period					
No suitable facilities ->	Improved animal health	→Invest in additional pen space			
Too few calves per age group	Consumer & societal demand	Practical examples, skills to see			
Disease challenges on the farm	Done in sheep & goat farming ->	e.g. if the calf has had enough milk			
Increased working time and cost,	learning & inspiration?	Economic incentives			
reduced milk sales	Return to the "old" system?	Knowledge on calf stress & health,			
No pasture on the farm	Testing in a small animal groups	somatic cell count & mastitis,			
Not seen as relevant	Reduced workload	management methods			
Dietary transition (weaning and dietary transition for the cows)					
Gradual weaning requires space	Thermal imaging camera to	Good herd management skills			
This is not 'fit for all' solution	identify sick calves could help	Routines, planning			
Not an option in complete	Nose flap could help	Space for transition feeding,			
feeding, as all animals are fed	Enhanced animal health	separate boxes			
similarly		Good health management			
		(vaccines,parasite control)			

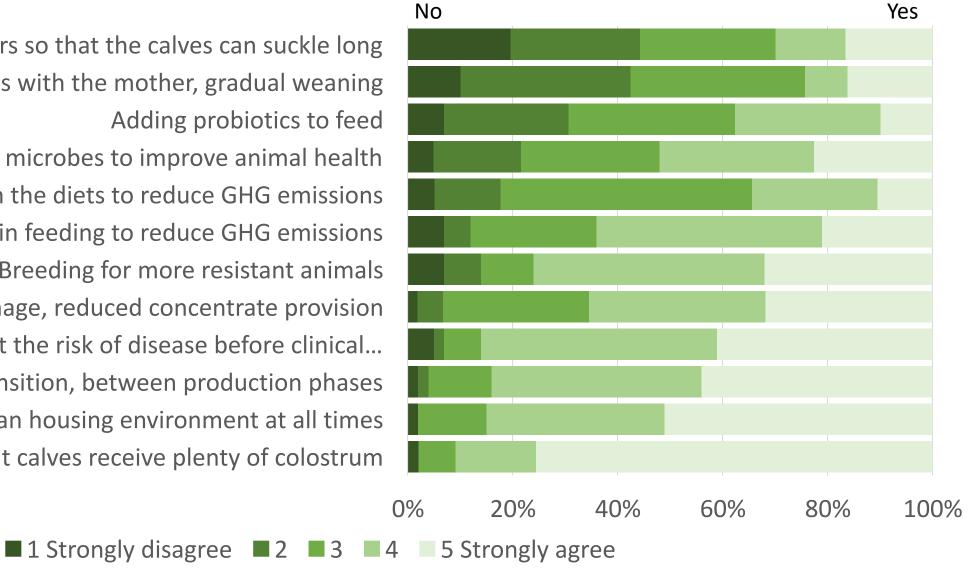
Results – Barriers, enabling factors and needs

Barriers	Enabling factors N	leeds			
Feed additives to reduce greenhouse gas emissions					
Other alternatives are preferred	If the additive permit to increase the	Research-based, local knowledge			
Costly, doubts on health impacts	energy of the feeding ration, it might be	No negative impact on milk yield,			
Dependency on industrial product	interesting for the farmer	animal health and welfare, food			
Farmers feeling threatened		safety and economic results			
Poor knowledge about emissions		Society's support (subsidies?)			
Adding probiotics to the feed of the animals to gain health benefits					
Good feed/management preferred	Already known and used on farms				
Worries: undesired impacts, use cost	Prevention Interesting. less work				
and diversity of micro-organisms	Colostrum as a natural probiotic				
Dependency on a company	Probiotics produced on the farm				
Time to produce probiotics	Fermented plant extracts				
Microbiota approaches to improve disease prevention and detection					
-	Improving health and preventing	Lead farms can "show the way"			
	diseases is interesting	Independent advice & validation			
	Word-of-mouth, if it works well	Easy test results (yes/no)			
		Sound economic analysis, low cost			

Results – An example of practices discussed in the Finnish focus group

Solutions for good delegation of work and maintenance

- Delegation → Each task has a responsible person, create ownership, give responsibilities to workers
- Reserve time for regular follow-ups and accumulation of knowhow to ensure.
- Planning


 Small tasks tend to be ignored if they are not scheduled
- Focus on monitoring only essential parameters
- Guiding new workers, providing clear work instructions with illustrations
- Use of whiteboards
- Giving responsibility to a worker helps to feel more comfortable at work

Results – I would recommend a practice....

Using foster mothers so that the calves can suckle long Keeping newborn calves with the mother, gradual weaning Adding probiotics to feed Using beneficial microbes to improve animal health A fat source in the diets to reduce GHG emissions Adjustments in feeding to reduce GHG emissions Breeding for more resistant animals Increased roughage, reduced concentrate provision Methods that can detect the risk of disease before clinical... Gradual diet transition, between production phases Ensuring clean housing environment at all times Ensuring that calves receive plenty of colostrum

Conclusion – How to encourage the adoption of new methods?

- Have strong scientific evidence that the practice is affordable and has has a positive effect on production parameters, farm's workload, animal health, the quality and safety of products, the environment and sustainability of ecosystems.
- Demonstrated applicability and efficacy in local farms, where practical aspects such as work organisation, management, infrastructure can be shown in local contexts.
- Farmers' behavior is also influenced by the level of knowledge, skills and the perceived usefulness of practices → Capacity building, provision of adequate training.

HoloRuminant PARTNERS

Thank you for your attention

www.holoruminant.eu

