

Implementation of a Deep Learning based system for monitoring farrowing in sows

WUTKE, M., LENSCHES, C., HOLZHAUER, A., LIEBOLDT, M.A., TRAULSEN, I.

Cross innovation and digitalisation in animal-friendly pig farming with consideration of resource protection

Project goals:

- Development of a sensor-based early warning and decision support system to support farmers and practicioners with a continuous and goal-oriented sensor data analysis
- Transfer of knowledge ("DigiPig– advise, quantify, promote")
- Focus of the evaluation: current and practice-relevant issues in pig farming

Research project "DigiPig"

<u>Goals:</u>

- Implementation of a support system for automatic birth monitoring
- Providing critical information of the farrowing process.
- Identify and analyze birth-related events at an early stage

Contributions:

- Address the challenges of birth monitoring
- Reduce piglet mortality & increase animal welfare in the long term

One-stage birth monitoring

<u>Idea</u>

- Apply object detection for multiple body parts of the sow
- Compute orientation and target area
- Detect piglets within/without target area

<u>Aim</u>

- Determine starting time of farrowing
- Compute individual birth intervals

GEORG-AUGUST-UNIVERSITÄT

One-stage birth monitoring

Noisy-student approach

Xie et al. (2020)

- Dataset: Birth events of **96 sows** in 12 trials with 8 sows each Group structures:
 - 1. Farrowing: With/ without fixation
 - 2. Age: Young sows (1.-3. litter) / old sow (at least 4. litter)

Materials and methods

Sample size (training): 2700

Sample size (test): 300

Model training (teacher model)

Training specifications

Parameter	Konfiguration
Input Dimension	1 x 640 x 640
Output	BB and class information
Optimizer	SGD
Learning rate	0.001
Loss function	Box loss & CLS loss
Evaluations metrics	Recall / Precision
Activation	Leaky ReLU / Sigmoid
Epochs	50
Training set size	1500
Batch size	50

Target area computation

- Body part detection
- Determination of the sows orientation and a delimited birth area

1. Body part detection

Target region

Model training (student)

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$ecision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$TP = True \ Positive$$

 $TN = True \ Negative$
 $FP = False \ Positive$
 $FN = False \ Negative$

Back

Head

Piglet

Ground truth

Tail

Evaluation on whole video instances

Evaluation (teacher)

• Testdata: 300 images

• Randomly selected

Manually annotated

Dataset	# Videos	# Birth detected	Ø Difference (seconds)	Accuracy	Recall	Precision
With birth	10	8	11,5	-	-	-
Without birth	10	0	-	-	-	-
All	20	8	11,5	0,9	0,8	1
			-	-		-

$$Precision = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{TP + FN}$$
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

<u>Evaluation (student)</u>		
•	Testdata: 1137 images	
٠	Randomly selected	

• Pseudo-labels generated by teacher model

Object class	Frequency	Precision	Recall	MAP
Piglet	744	0.978	0.978	0.991
Tail	827	0.997	0.992	0.995
All	1571	0.988	0.985	0.993

TP = True Positive TN = True Negative FP = False PositiveFN = False Negative

Data processing & model training
¥
Body part detection
ł
Target area computation
Piglet detection in target area
Piglet tracking in target area
······································
Birth information

- Increased focus on monitoring target area by using two-stage approach
 - The degree of complexity can be reduced and piglet tracking can be performed
- Determination of individual birth intervals and identification of problem situations
- Machine learning-based object detection as a basis for further additions (orientation, target areas and tracking).

Data processing & model training
¥
Body part detection
+
Target area computation
ţ
Piglet detection in target area
Piglet tracking in target area

Bundesministerium für Ernährung und Landwirtschaft

aufgrund eines Beschlusses des Deutschen Bundestages

- Increased focus on monitoring target area by using two-stage approach
 - The degree of complexity can be reduced and piglet tracking can be performed
- Determination of individual birth intervals and identification of problem situations
- Machine learning-based object detection as a basis for further additions (orientation, target areas and tracking).

Thank you for your attention

Projektträger

Bundesanstalt für

Landwirtschaft und Ernährung

