

Trade-off between fertility and production in French dairy cattle in the context of climate change

Aurélie VINET

Mattalia S, Vallée R, Barbat A, Bertrand C, Cuyabano BCD and Boichard D

Context

- Climate change will lead to higher average temperatures and more frequent extreme events
- High temperatures has negative effect on all cattle performances (production, fitness)
- Essential to identify animals able to **achieve sufficient overall production** while maintaining their **reproductivity ability** in environments with increasing temperatures

Objectives

- Study **trade-offs** between production and fertility under different climate conditions
- Predict the **effects of current selection** on the future performances, under warmer climate
- B Define ways to select heat tolerant animals

10 years of data (2010-2020)Records from **first lactation**

Production

Protein yield (PY)

Test-day performances records

Restricted to 80 and 200 days in milk to avoid taking into account the G x lactation stage interaction

Fertility

Conception rate, 1st insemination (CR)

1 if succes (calving); 0 otherwise

Inseminations between 50 and 180 days after calving (= more than 90% of the first service records for both breeds)

1,966,985

649,814

1612

Holstein

3,251,061

10,245,692

3,351,068

5463

Number of cows with PY and CR

Number of records of PY

Number of records of CR

Number of sires

612,299

Montbeliarde

Production

Protein yield (PY)

Test-day performances records

Restricted to 80 and 200 days in milk to avoid taking into account the G x lactation stage interaction

Fertility

Conception rate, 1st insemination (CR)

1 if succes (calving); 0 otherwise

Inseminations between 50 and 180 days after calving (= more than 90% of the first service records for both breeds)

Meteorological data

Daily estimated temperature and humidity

on a grid of 9892 squares of 8x8km

 $THI = (1.8 \times T + 32) - (0.55 - 0.0055 \times RH) \times (1.8 \times T - 26)$

Production

THIP

= average THI over a **3d period** <u>before</u> **TD** (the date of the TD and the 2 previous days)

Fertility

THIF

= average THI over a **8** d period <u>after</u> service (day of insemination to day 7 after insem.)

Meteorological data

Daily estimated temperature and humidity

on a grid of 9892 squares of 8x8km

 $THI = (1.8 \times T + 32) - (0.55 - 0.0055 \times RH) \times (1.8 \times T - 26)$

Production

THIP

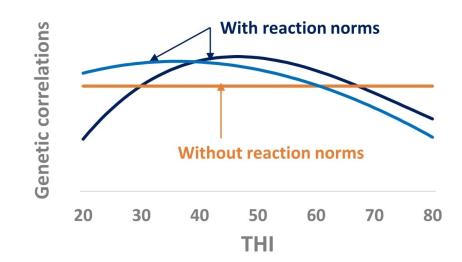
= average THI over a **3d period** <u>before</u> **TD** (the date of the TD and the 2 previous days)

Fertility

THIF

= average THI over a **8** d period <u>after</u> service (day of insemination to day 7 after insem.)

Meteorological data


THI Min-Max = 11-79

	Holstein	Montbeliarde
Average THIp (PY)	51.3	47.4
Average THIf (CR)	50.7	47.3

About 1.5% performances recorded at THI>70

Bivariate reaction norm models (= account for GxTHI)

Trends in genetic correlations between production and fertility traits **over a range of THI conditions**

Sire models

As CR has a very low genetic variance, very large datasets are required for **accurate estimation** of variances and within/between traits covariances.

Sire models make it possible to handle very large datasets spanning all THI conditions.

Only one performance per cow for CR

⇒ sire models appropriate for describing the effect of the THI gradient

fertility
$$\longrightarrow$$
 $\begin{bmatrix} \mathcal{Y}_f \\ \\ \mathcal{Y}_p \end{bmatrix} = \begin{bmatrix} X_f \beta_f + Z_f a_f + e_f \\ \\ X_p \beta_p + Z_p a_p + W_p p_p + e_p \end{bmatrix}$

fertility
$$\longrightarrow$$
 $\begin{bmatrix} y_f \\ y_p \end{bmatrix} = \begin{bmatrix} X_f \boldsymbol{\beta_f} + Z_f a_f + e_f \\ X_p \boldsymbol{\beta_p} + Z_p a_p + W_p p_p + e_p \end{bmatrix}$

 $\boldsymbol{\beta_f}$ and $\boldsymbol{\beta_p}$: fixed effects, specific to each trait

fertility
$$\longrightarrow$$
 $\begin{bmatrix} y_f \\ y_p \end{bmatrix} = \begin{bmatrix} X_f \beta_f + Z_f \mathbf{a_f} + e_f \\ X_p \beta_p + Z_p \mathbf{a_p} + W_p p_p + e_p \end{bmatrix}$

Vectors of additive sire regression coefficients

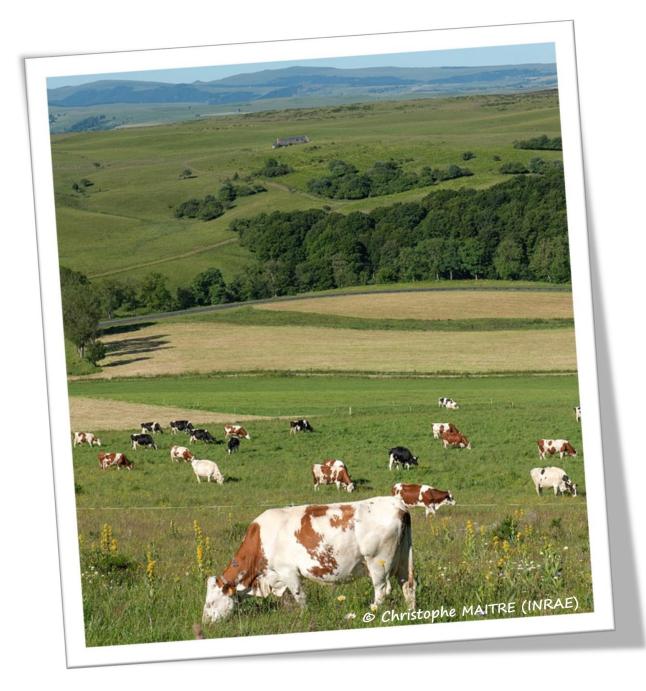
 a_f : for fertility, 3 values per animal (Legendre order 0 to 2)

 a_p : for production, 4 values per animal (Legendre order 0 to 3)

fertility
$$\longrightarrow$$
 $\begin{bmatrix} y_f \\ y_p \end{bmatrix} = \begin{bmatrix} X_f \beta_f + Z_f \boldsymbol{a_f} + e_f \\ X_p \beta_p + Z_p \boldsymbol{a_p} + W_p \boldsymbol{p_p} + e_p \end{bmatrix}$

Vectors of additive sire regression coefficients

 a_f : for fertility, 3 values per animal (Legendre order 0 to 2)

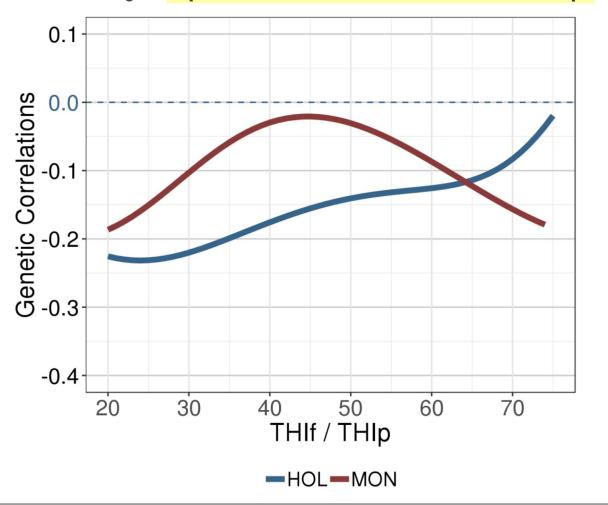

 a_p : for production, 4 values per animal (Legendre order 0 to 3)

 p_p : vector of permanent environment regression coefficients **for production**, 4 values modeled with the same polynomials as those used for the additive effect of the sire

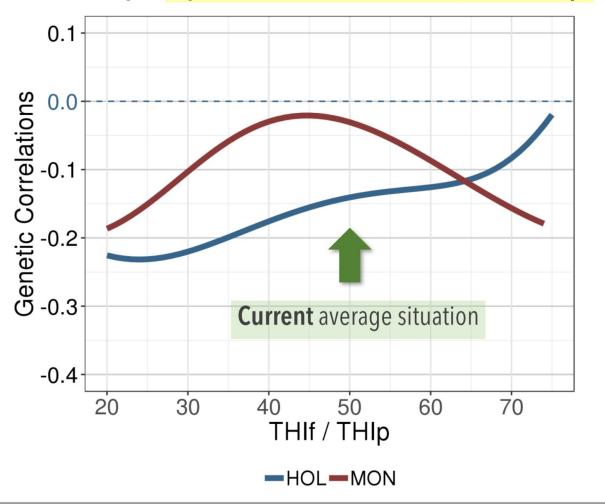
fertility
$$\longrightarrow$$
 $\begin{bmatrix} y_f \\ y_p \end{bmatrix} = \begin{bmatrix} X_f \beta_f + Z_f a_f + \mathbf{e_f} \\ X_p \beta_p + Z_p a_p + W_p p_p + \mathbf{e_p} \end{bmatrix}$

 e_f and e_p : vectors of **residual variances**

considered heterogeneous across 5 THIp/f classes (\leq 29, 30-39, 40-49, 50-59, \geq 60)

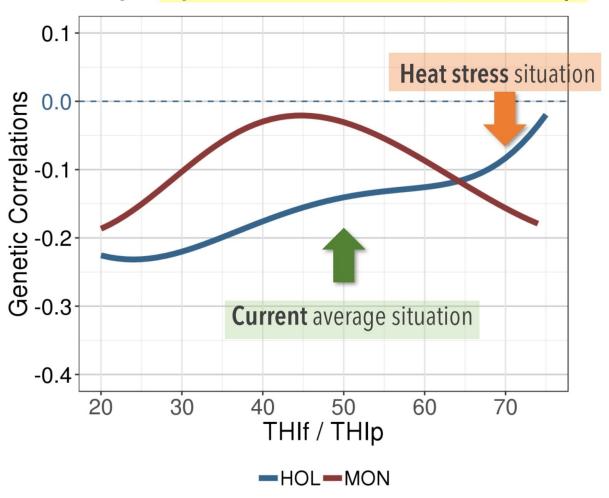


Trade-offs under different climate conditions


Results - Trade-offs under different climate conditions

Genetic correlations between CR and PY along THI gradient, considering an **equivalent THI for both traits (THIf = THIp)**

Results - Trade-offs under different climate conditions

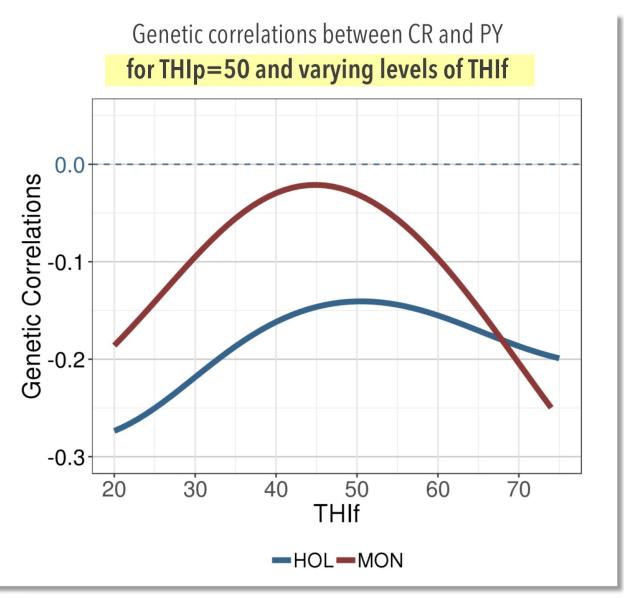

Genetic correlations between CR and PY along THI gradient, considering an **equivalent THI for both traits (THIf = THIp)**

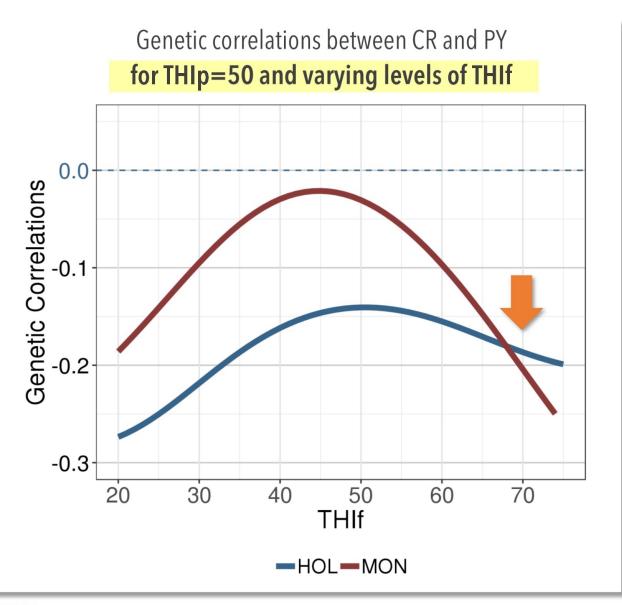
Current genetic correlation between CR and PY (-0.14 for HOL; -0.03 for MON)

Results - Trade-offs under different climate conditions

Genetic correlations between CR and PY along THI gradient, considering an **equivalent THI for both traits (THIf = THIp)**

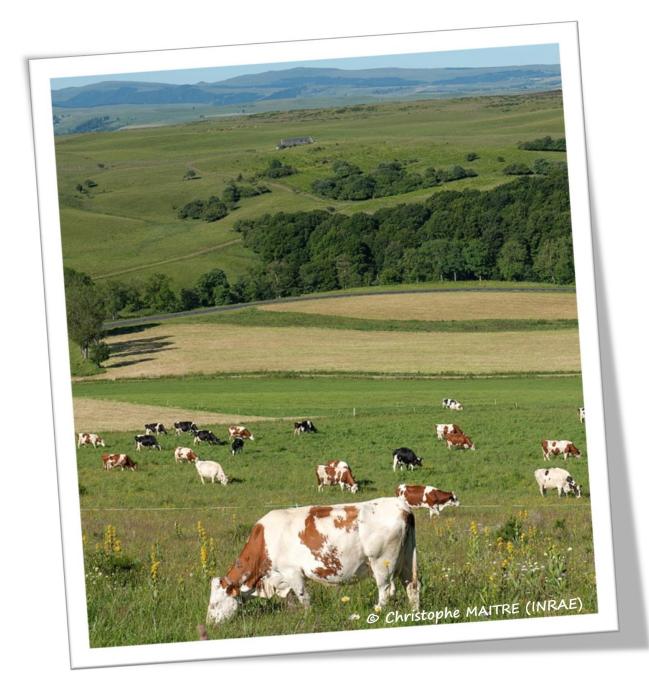
Genetic correlation between CR and PY for heat stress scenario (-0.08 for HOL; -0.16 for MON)


Current genetic correlation between CR and PY (-0.14 for HOL; -0.03 for MON)


2

Predict the effects of current selection on the future performances, under warmer climate

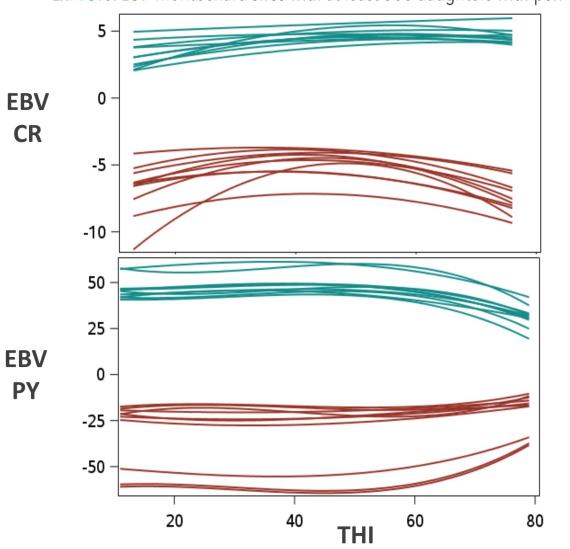
Results - Predict effects of current selection



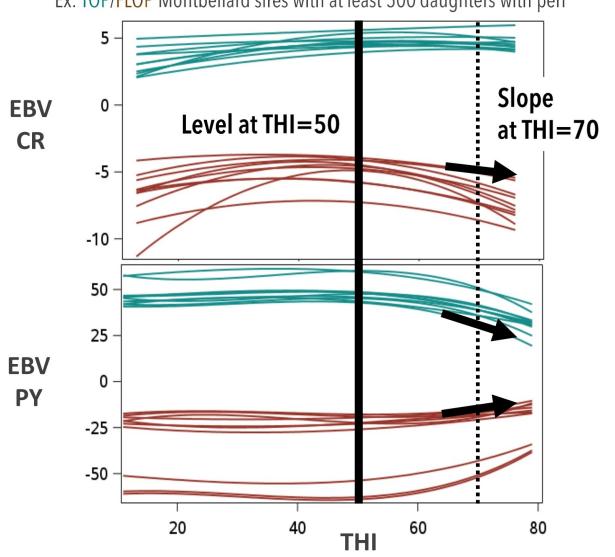
Results - Predict effects of current selection

Negative but limited impact of the current selection on PY (THIp=50) on the future CR (THIf=70)

rg = -0.19 for HOL; -0.20 for MON

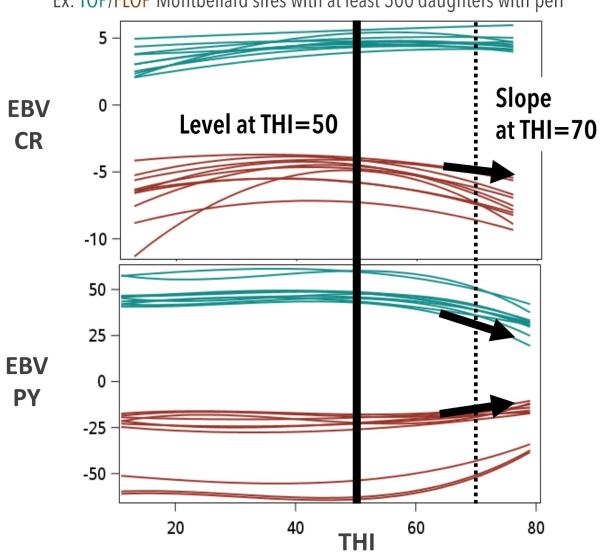


Define ways to select heat tolerant animals



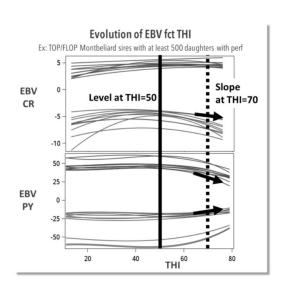
Ex: TOP/FLOP Montbeliard sires with at least 500 daughters with perf

Evolution of EBV fct THI


Ex: TOP/FLOP Montbeliard sires with at least 500 daughters with perf

The **slope** gives the evolution of the ranking, toward or

Evolution of EBV fct THI


Ex: TOP/FLOP Montbeliard sires with at least 500 daughters with perf

Estimated Breeding Values (EBV) give the ranking between animals at a given THI not the forecasted performance

All sire families experience a decrease in fertility and production as THI increases

Generally, within-trait the **best sires are always the same** (few GxTHI, results supported by all our univariate analyses, for both breeds)

The genetic correlation between "Level at THI=50" and "Slope at THI=70"

Relationship between the current breeding values and the trend of BV in warmer conditions

	CR	PY
Holstein	-0.03	-0.37
Montbeliarde	+0.37	-0.71

Evolution of EBV fct THI Ex: TOP/FLOP Montbeliard sires with at least 500 daughters with perf Slope at THI=70 Level at THI=50 CR -5 -10 -25 EBV 0 -25 -50

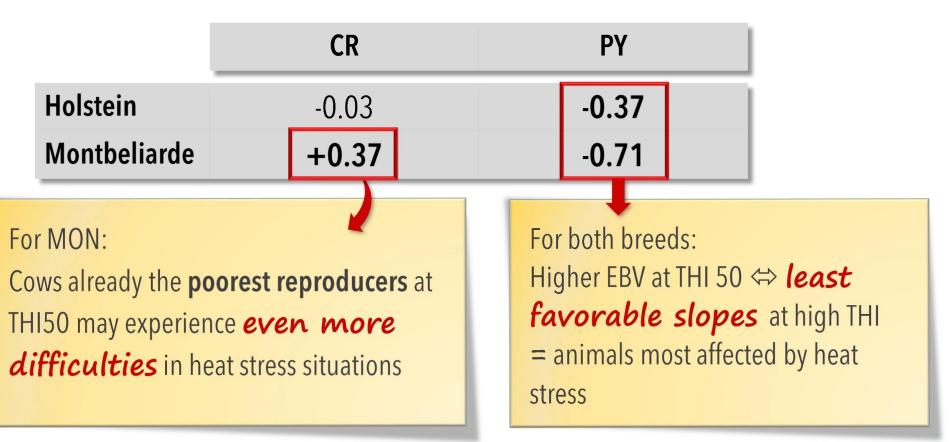
Results - Selection on heat tolerance?

The genetic correlation between "Level at THI=50" and "Slope at THI=70"

Relationship between the current breeding values and the trend of BV in warmer conditions

	CR	PY
Holstein	-0.03	-0.37
Montbeliarde	+0.37	-0.71

For MON:


Cows already the **poorest reproducers** at THI50 may experience **even more difficulties** in heat stress situations

Evolution of EBV fct THI Ex: TOP/FLOP Montbeliard sires with at least 500 daughters with perf Slope at THI=70 EBV 0 25 EBV 0 25 EBV 0 25

Results - Selection on heat tolerance?

The genetic correlation between "Level at THI=50" and "Slope at THI=70"

Relationship between the current breeding values and the trend of BV in warmer conditions

EBV

Level at THI=50

Results - Selection on heat tolerance?

What about the genetic correlation between the slopes?

Holstein	+0.41
Montbeliarde	+0.28

Not the same heat tolerance trait

Selection for PY slope:

- o is not antagonistic with selection for CR slope
- could be a heat tolerance trait (easier to select than CR slope)

Summary

- In France, the trade-off between production and fertility is moderate
 When considering mid-lactation production, period when most of first inseminations were performed
- Trade-off remains more or less stable in heat stress situations

 Performances recorded at THI>70 are still rare for France
- However, animals with the best breeding values for production today will be the most affected by temperature increases, both in term of fertility and production
- Selection for greater heat tolerance should be done by considering the evolution of production and fertility traits
- The genetic variability of the slopes (heat tolerance traits) are weak ⇒ the potential genetic gain will be
 limited

Acknowledgements

www.rumigen.eu

