

Estimating the heritability of nitrogen and carbon isotopes in the tail hair of beef cattle

Morteza Moradi Christie Warburton Luis Prada e Silva

Background

- $\delta^{15}N$ (¹⁵N : ¹⁴N), $\delta^{13}C$ (¹³C : ¹²C)
- Significant variations between $\partial^{15}N$ and $\partial^{13}C$ between the individuals
- Animals with lower ∂¹⁵N and higher ∂¹³C values of the tail hair are more nitrogen use & feed efficient
- More ¹⁴N and ¹³C lost in urine (negative, and favourable correlation)
- Animals with lower ∂¹⁵N experienced higher ADG, more frequent pregnancy and lactation
- Research gap in the industry if $\partial^{15}N$ and $\partial^{13}C$ are heritable traits

Hypothesis

The $\delta^{15}N$ and $\delta^{13}C$ of the tail hair are heritable in tropically adapted beef cattle

Why Tail hairs' isotopes vs plasma or body tissues:

- Easy, quick and non-invasive
- Tail hair archives long-period isotopic information & grows continuously
- Store a long time at room temperature

Methods

- 492 steers (268 Brahman & 224 Droughtmaster)
- 3 generations full pedigree
- 2 years 2019 & 2020
- Queensland, Australia
- Low-quality tropical pasture

Methods

- The segment of hair represents the driest period and low protein diet
- Nitrogen recycling and conservation mechanisms
- Analysing 10 mm for isotopes = Isotopic history for two weeks

Statistical analysis

- Model fixed effects are determined in RStudio using linear regression
- All the fixed effects were highly significant ($p \le 0.01$) for both $\partial^{15}N$ and $\partial^{13}C$ traits
- 6 significant fixed effects are fitted in the model; ADGP1, ADGP2, ADGP3, age, breed, and year (as contemporary groups)

Heritability analysis

- WOMBAT software using 3 generations of available pedigree
- Univariate and bivariate analyses were performed using the multibreed data (n = 492)

Variance components

- Variance components were estimated using the model:
 - $y = Xb + Z_Aa + e$
 - **y** is a vector of observations of $\partial^{15}N$ or $\partial^{13}C$, **X** is an incidence matrix relating observations to fixed effects, Z_A is an incidence matrix relating observations to direct genetic effects, **b** is a vector of fixed effects, **a** is a vector of direct genetic effects and **e** is a vector of residuals.

• Furthermore, $var(\mathbf{a}) = \mathbf{A}\sigma_a^2$ and $var(\mathbf{e}) = \mathbf{I}\sigma_e^2$ where **A** is the numerator relationship matrix, **I** is the identity matrix, σ_a^2 is the direct additive genetic variance and σ_e^2 is the residual error variance.

Results

Heritability analysis

Table 1. Estimated genetic variance (σ_A^2) , residual variance (σ_E^2) , phenotypic variance (σ_P^2) and heritability (h^2) of $\partial^{15}N$ and $\partial^{13}C$ estimated in a multibreed population of Brahman and Droughtmaster steers (standard errors in parentheses)

ltems	∂ ¹⁵ N	∂ ¹³ C
h²	0.43 (± 0.14)	0.41 (± 0.15)
σ^2_A	0.19 (± 0.07)	0.47 (± 0.18)
σ² _P	0.44 (± 0.03)	1.14 (± 0.08)
σ² _E	0.25 (± 0.06)	0.67 (± 0.15)

Results

Phenotypic and Genetic correlation

Table 2. Bivariate estimates (correlations between $\partial^{15}N$ and $\partial^{13}C$) for Phenotypic correlation (r_p) and Genetic correlation (r_g) for multibreed (standard errors in parentheses)

ltems	Correlation coefficient
Phenotypic correlation (r _P)	-0.40 (± 0.04)
Genetic correlation (r _g)	-0.78 (± 0.16)

Conclusion and Implication

Conclusion

- The $\partial^{15}N$ of the tail hair is heritable $h^2 = 43\%$
- The ∂^{13} C of tail hair is heritable $h^2 = 41\%$
- These two traits are in favourable high and moderate negative genetic and phenotypic correlations (-0.78 and -0.40, respectively)

Implication

- The first research to estimate the heritability of these traits in cattle
- Supports the potential to use N and C isotopes in the early selection of more efficient animals
- Less environmental nitrogen pollution (Water and total greenhouse gas emissions)

Further research

• More animals, breeds, years, sexes, and other ruminant species

Acknowledgement

- John Croaker (Australian Brahman Breeders Association)
- Dr David Johnston (UNE) for providing the pedigree information
- Meat and Livestock Australia
- Australian Government Research Training Program Scholarship

