

Biotechnology and Biological Sciences Research Council

Spatial modelling improves genetic evaluation of Tanzanian smallholder crossbred dairy cattle

Isidore Houaga

R. Mrode, M. Okeyo, J. Ojango, Z. Nziku, A. Nguluma, E. Lavrenčič, G. Mafra Fortuna, C.C. Ekine-Dzivenu, A. Djikeng, G. Gorjanc, I. Pocrnic

EAAP 2023-08-30

Isidore.Houaga@roslin.ed.ac.uk

Large collaboration

African Smallholder breeding programmes

"Phenotype and genotype some cows and you can do genomic selection"

- Small-holder farms are small & very variable
- Limited use of assisted reproduction (AI, MOET, ...)
- \rightarrow hard to separate genetic and environmental effects
- A solution?
 - borrow information from neighbours (spatial model)

Spatial context

Selle et al.. 2020 (https://doi.org/10.1186/s12711-020-00588-w)

Data

- 1911 crossbred cows (4 classes of exotic genes)
- Genotyped with 664,822 SNPs
- 1386 herds (1-9 cows/herd; 75% < 3 cows)
- 72 wards
- 19,375 test-day milk yields
- Average (± SD) milk yield (Kg) 8.31 ± 4.31

A crossbred cow

Modelling

- Baseline model (B):
 - Phenotype = Fixed + Herd + Perm + Genetics + Noise
 - Herd $\mathbf{h} \sim N(0, \| \mathbf{\sigma}_{h}^{2})$
 - Perm $\mathbf{p} \sim N(0, |\mathbf{\sigma}_{p}^{2})$
 - Genetics $\mathbf{a} \sim N(\mathbf{0}, \mathbf{G} \sigma_{g}^{2})$
 - Noise $\mathbf{e} \sim N(0, \mathbf{I} \sigma_{e}^{2})$
- Alternative models
 - BW = B + Wards $\mathbf{w} \sim N(0, |\sigma^2_w)$
 - BS = B + Location (spatial) $L \sim N(0, Matern(E, Kappa, \sigma_{L}^{2}))$
 - BWS = BW + Spatial effects
- All models fitted with R-INLA

Spatial modelling with R-INLA

Variance components (posterior distribution)

Spatial effects

Fig: Posterior mean and standard deviation of estimated spatial effect from model BWS

Does it matter? Yes!

Proportion of exotic genes (cross validation)

	<0.36	0.36-0.6	0.61-0.875	>0.875		
						Forward validation
Models	(n=84)	(n=309)	(n=770)	(n=731)	Average	(n=146)

Β

BW

BS

BWS

Proportion of exotic genes (cross validation)

Models	<0.36 (n=84)	0.36-0.6 (n=309)	0.61-0.875 (n=770)	>0.875 (n=731)		Forward validation (n=146)
					Average	
В	-0.05	0.28	0.34	0.24	0.20	0.40
BW						

BS

BWS

Proportion of exotic genes (cross validation)

	<0.36	0.36-0.6	0.61-0.875	>0.875		
Models	(n=84)	(n=309)	(n=770)	(n=731)	Average	Forward validation (n=146)
В	-0.05	0.28	0.34	0.24	0.20	0.40
BW	0.22	0.39	0.51	0.42	0.39	0.59
BS						

BWS

Proportion of exotic genes (cross validation)

Models	<0.36	0.36-0.6 (n=309)	0.61-0.875 (n=770)	>0.875 (n=731)		Forward validation (n=146)
	(n=84)				Average	
В	-0.05	0.28	0.34	0.24	0.20	0.40
BW	0.22	0.39	0.51	0.42	0.39	0.59
BS	0.75	0.78	0.82	0.81	0.79	0.86

BWS

Proportion of exotic genes (cross validation)

	<0.36	0.36-0.6	0.61-0.875	>0.875		
Models	(n=84)	(n=309)	(n=770)	(n=731)	Average	Forward validation (n=146)
В	-0.05	0.28	0.34	0.24	0.20	0.40
BW	0.22	0.39	0.51	0.42	0.39	0.59
BS	0.75	0.78	0.82	0.81	0.79	0.86
BWS	0.75	0.78	0.82	0.81	0.79	0.86

Continuous Ranked Probability Score (CRPS)

Conclusion

Spatial modelling has a significant effect on estimated variance components

• Estimated breeding values change when we account for location (likely fixes over/under-estimation)

Doubles phenotype prediction accuracy

• Future: Work with environmental covariates and G x E

Biotechnology and Biological Sciences Research Council

Spatial modelling improves genetic evaluation of Tanzanian smallholder crossbred dairy cattle

