The potential of strategic concentrate supplementation in reducing age at slaughter in pasture-based dairy-beef systems

J. O'Driscoll^{1, 2}, D. Purfield², N. McHugh³, C.Murphy² and N. Byrne¹ ¹Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland. ²Munster Technological University, School of Biological Sciences, Bishopstown, Cork, Ireland. ³Teagasc, Animal & Grassland Research and innovation centre, Moorepark, Co. Cork, Ireland.

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

 $\mathbf{A}_{\mathbf{GRICULTURE}}$ and $\mathbf{F}_{\mathbf{OOD}}$ $\mathbf{D}_{\mathbf{EVELOPMENT}}$ $\mathbf{A}_{\mathbf{UTHORITY}}$

Dairy cow numbers up 40% in 10 years Dairy beef calf numbers to hit 1m -Teagasc

Dairy cow numbers continue to ris

The growth in dairy beef calf numbers is occurring in Ireland and the US, with simultaneous decline in suckler numbers.

Dairy beef challenges from a beef farmer's perspective

Adam Woods takes a look at dairy beef from a beef farmer's perspective and what needs to change to make the system a success.

• Policy ambition to reduce slaughter age (3-3.5 months)

- Climate Action Plan 2023
- Teagasc MACC 2023

Rapid Communication: Large exploitable genetic variability exists to shorten age at slaughter in cattle¹

D. P. Berry,*² A. R. Cromie,† and M. M. Judge*

*Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland; and †Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland

Experimental design

N=80

N=160

N=80

Treatment	Calf rearing	Summer GS	Autumn GS	1 st winter	Second GS	Finishing period
Grass-only (GO)	Milk replacer, <i>ad-lib</i> . Conc.	Pasture-only	1 kg concentrate	Grass-silage <i>ad-</i> <i>lib</i> . 1.5 kg concentrate	Pasture-only	Grass-silage <i>ad-lib</i> . 5 kg concentrate
INTER	Milk replacer, <i>ad-lib</i> . Conc.	1 kg concentrate	1 kg concentrate	Grass-silage a <i>d- lib</i> . 1.5 kg concentrate	Pasture-only	Grass-silage <i>ad-lib</i> . 5 kg concentrate
E E HIGH	Milk replacer, <i>ad-lib</i> . Conc.	1 kg concentrate	1 kg concentrate	Grass-silage <i>ad-</i> <i>lib</i> . 1.5 kg concentrate	3 kg conc. July 1 st - Aug. ^{14th} 5kgs conc. Aug.15 th	Grass-silage <i>ad-lib</i> . 5 kg concentrate (HF only)

System measurements

Animal measurements

Regular live-weight measurement

Body condition scoring

BCS ≥ 3.75 → drafted for slaughter

Ultracound cooping of fat and

Statistical analysis

- Analysed using linear mixed models (version 9.4; SAS Institute Inc., Cary NC).
 - Fixed effects:
 - Genotype (AAX and HF),
 - Feed treatment (GO, INTER, HIGH)
 - Dam parity (1, 2, 3, 4, ≥5)
 - Dam beef genetic merit
 - Year (2021 and 2022)
 - Day of birth within year was included as a fixed effect in all models except slaughter age
 - Sire was included as a random effect for all traits

Concentrates fed

EAAP European Federation of Animal Science

 $\mathbf{A}_{\mathrm{GRICULTURE}}$ and $\mathbf{F}_{\mathrm{OOD}}$ $\mathbf{D}_{\mathrm{EVELOPMENT}}$ $\mathbf{A}_{\mathrm{UTHORITY}}$

Age at slaughter

Carcass weight

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Conclusion

- Supplementation over the first grazing season had no effect on lifetime performance
- Supplementation during the second grazing season allowed AAX achieve a reduced slaughter age whilst still producing market acceptable carcass
- HF steers were unable to achieve a reduced slaughter age
- Correct genotype and correct management

Thank You !!

A Imi

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Transa

A REPORT OF THE OWNER.

easasc

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY