

74th Annual Meeting of EAAP, Lyon, 2023

Session 57

"Grassland management and grassland-based feeding systems for efficient and sustainable milk and meat production"

30 August 2023

Yearly monitoring of soil ingestion by dairy cows in a grassland system with feed supply

Collas C¹, Laflotte A², Feidt C¹, Jurjanz S¹

¹ URAFPA, Université de Lorraine-INRAE, 54000 Nancy, France

² Centre R&D La Bouzule, ENSAIA, Université de Lorraine, 54280 Laneuvelotte, France

Soil ingestion, a pathway of exposure

Anthropogenic activities result in the emission of pollutants:

industrial products (PCBs, pesticids, metals, ...), by-products of combustion (PCDD/Fs, PAHs, ...), ...

Deposits in the environment ...

... and **contamination of ecosystem** compartments

Contamination of animal ...

- Dermal contact
- Inhalation
- Ingestion of contaminated matrices (as soil)

... and foodstuffs

⇒lssues : **food safety, resilience of farming systems, ecosystem services**

Why study soil ingestion in dairy cows?

Studies of soil ingestion in cattle:

Recent studies: - Dairy cows in t

beef cattle

tether-grazing

tropical conditions

(Jurjanz et al. 2017; Collas et al. 2019, 2020)

Dairy cows in temperate conditions:

some ancient studies (Healy 1968; Fries et al. 1982)

particular method for soil ingestion estimation (Mamontova et al. 2007)

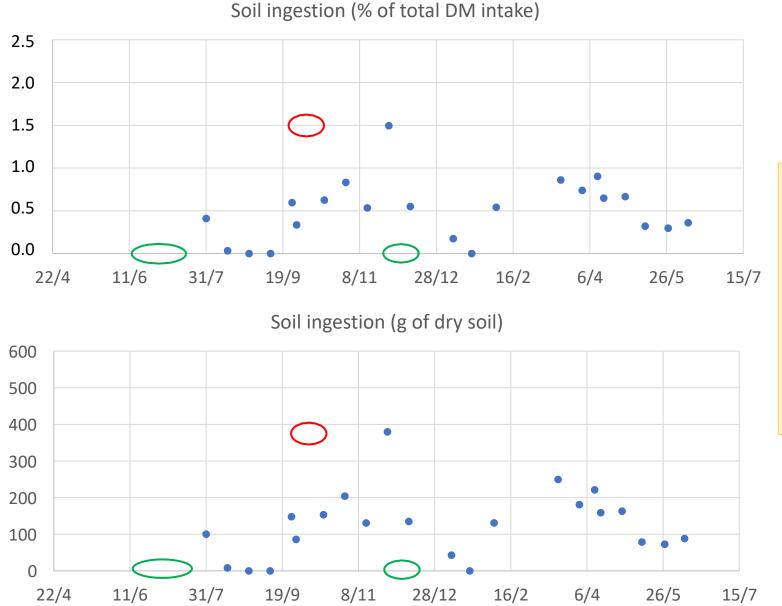
particular grazing conditions (strip-grazing) (Jurjanz et al. 2012)

\Rightarrow Few references in dairy cows

- \Rightarrow Mainly ancient data
- \Rightarrow Few data from Europe

Experimental design & sampling

La Bouzule, experimental farm (ENSAIA, University of Lorraine, France)


70 dairy cow herd

	Dec 19 to Feb 20		 Estimation of soil ingestion (in % of tota DM intake):
July to Nov 19		March to June 20	
Pasture with access to barn	Barn (free-stall with cubicles)	Pasture with access to barn	 analyse of an internal s marker (TiO₂) in faeces
Grass (+ mix ration)	Total mix ration	Grass (+ mix ration)	feed and soil estimation of digestibil

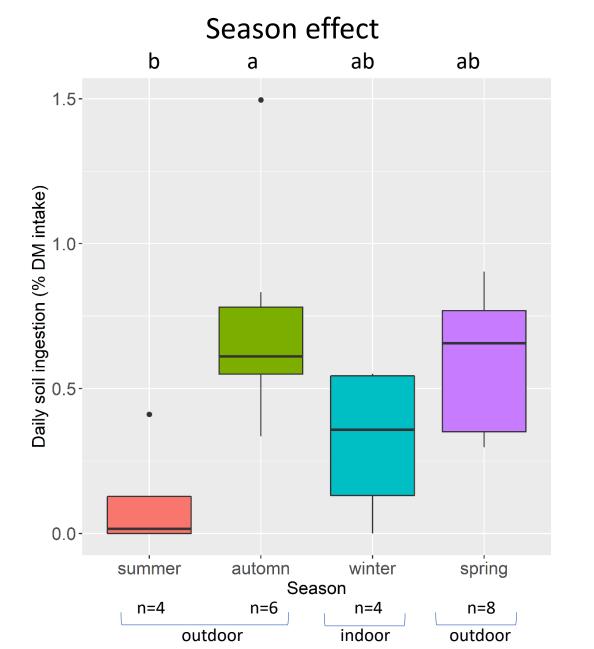
- Herd-scale monitoring:
- a year from July 2019 to June 2020
- sampling every 2 weeks (monthly in winter)
- composite faecal sample from 12 cows (representative of the herd) for each date

- Individual monitoring:
- 4 dates: July, Sept, Jan, April
- individual faecal samples from 30 cows for each date (including the 12 cows for herd monitoring)

Results – Daily soil ingestions – Herd-scale monitoring over a year

in % of total dry matter intake:

Mean:	0.5	
Min:	0	(28/08, 11/09, 20/01)
Max:	1.5	(27/11)


 ⇒ Highest value in late automn
 ⇒ very wet conditions, risk of soiled grass
 ⇒ Low or zero soil ingestion for some dates in summer (mix ration intake > grass intake, dry soil) and winter (barn, no direct contact with soil)

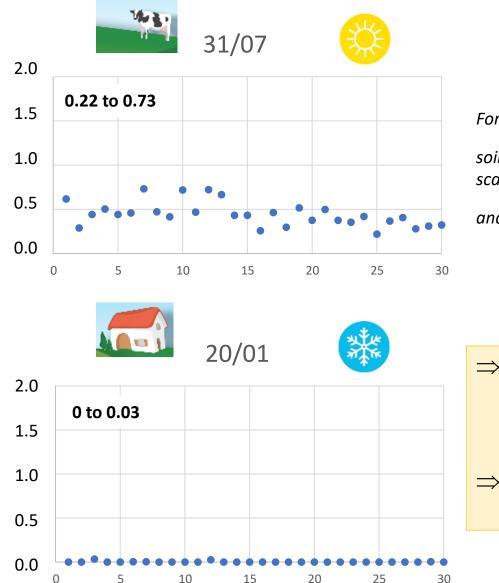
 \Rightarrow Variability even in barn

in g of dry soil:

Mean:	124	
Min:	0	(28/08, 11/09, 20/01)
Max:	380	(27/11)

Results – Daily soil ingestions – Herd-scale monitoring over a year

Mixed models with date as a random effect


Housing conditions (outdoor vs indoor): P>0.05

Season: P<0.05 summer vs automn (P<0.05) summer vs spring (P=0.07) Winter is no significantly different from any of the 3 other seasons outdoor

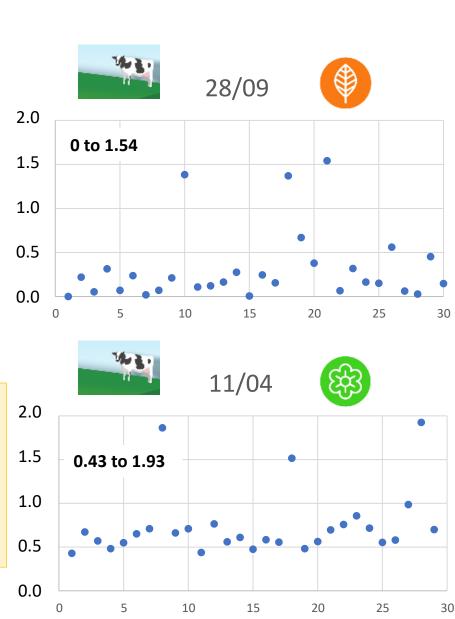
Soil ingestion (% DM intake)	summer	automn	winter	spring
min	0	0.34	0	0.30
mean	0.11	0.74	0.32	0.60
max	0.41	1.5	0.55	0.90

⇒ Soil ingestion highest in autumn and lowest in summer
 ⇒ Hyp => influence of weather and grass soiling
 ⇒ No significant differences between outdoor and indoor
 ⇒ Variability even in winter when cows are in barn

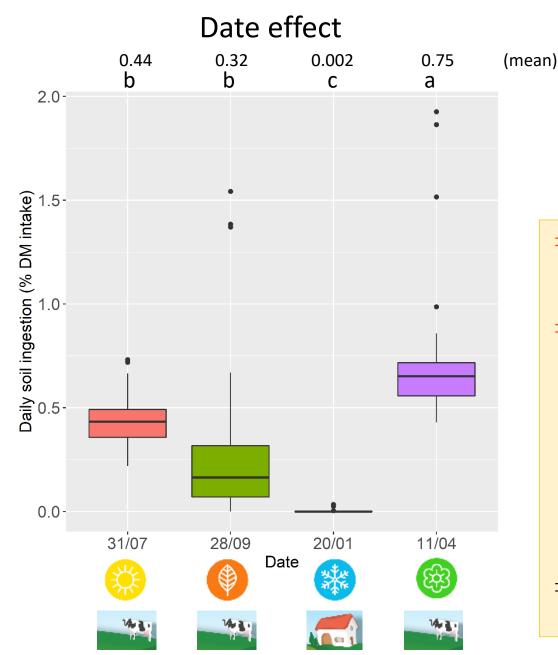
Results – Daily soil ingestions – Individual monitoring (4 dates)

Soil ingestions (in % of total DM intake)

For each date, t test between


soil ingestions by the 12 cows used for herdscale monitoring

and soil ingestions by the 18 other cows


for all dates P>0.05

⇒ No significant difference between the 12 cows of the pool and the others

 \Rightarrow The 12 cows of the pool were well representative of the herd

Results – Daily soil ingestions – Individual monitoring (4 dates)

Mixed model with cow as a random effect

Date: *P*<0.001 for all 2-by-2 comparisons *P*<0.01 except 31/07 vs 28/09 (*P*>0.05)

⇒ Significant differences between dates except for 31/07 and 28/09 (whereas summer and automn were different with herd monitoring)

⇒ 20/01: soil ingestions near to 0 and very low inter-individual variability => no access to pasture (but indoor and outdoor conditions were not different with herd monitoring)

- ⇒ Date effect does not give the same results as the season effect (with several dates grouped together)
- \Rightarrow Variations over time: influence of conditions at a given date

 \Rightarrow 28/09 and 11/04: 3 highest values => individual variability \Rightarrow Can cow characteristics influence this?

Results – Animal characteristics

Milk yield (*P*>0.05) Class of lactation stage (P<0.001) Lactation stage (*P*<0.001) r = 0.4b b а 2.0 2.0 Daily soil ingestion (% DM intake) 2.0 Daily soil ingestion (% DM intake) DM intake) 0 0 8 0 1.5 S. 1.5 0 8 0 . soil ingestion (% 1.0 1.0 <u>,</u> 0 0 0.5 0.5 0.5 0 Daily 0.0 0.0 0.0 ∞ 200 300 400 15 35 40 100 2 3 20 25 30 0 Daily milk yield (L) Lactation stage (days) Class of lactation stage <80 >180 days 80-180 ⇒ No significant effect of age (>2 to <10 years old), number of lactation, milk yield \Rightarrow Only lactation stage is significant, but low correlation (r=0.4) \Rightarrow Soil ingestion lower for early lactation stage

> ⇒ In this study, animal characteristics have little or no effect on soil ingestion (but relatively homogeneous dairy herd)

Mixed models with cow as a random effect

Comparisons with other studies in dairy cows

Housing conditions or grazing management	Season	Daily soil inge % of total DM intake	stions kg of dry soil	Reference
Grazing (paddocks or platforms during winter)	April to March	-	0.46 - 1.7	Healy 1968
Barn Barn with soil bedding Unpaved lots with no vegetation	-	0.14 - 0.53 0.35 - 0.64 0.6 - 0.96	-	Fries et al. 1982
Grazing with supply	May to Sept	-	0.85 – 2.8	Mamontova et al. 2007
Strip-grazing	Spring & Automn	1.0 - 7.3	0.15 – 0.85	Jurjanz et al. 2012
Continuous grazing (with supply) Barn	Summer, Automn, Spring Winter	0 — 1.5 0 — 0.55	0 - 0.38 0 - 0.14	The present study

Soil ingestions of the present study:

- At grazing => lower to those of previous studies
 (but feed supply increased when pasture allowance decreased)
- In barn => consistent with previous study

- \Rightarrow Soil ingestion by dairy cows:
- lower than 400 g per day in good grazing conditions (or with feed supply)
- can be limited by adapting grazing practices

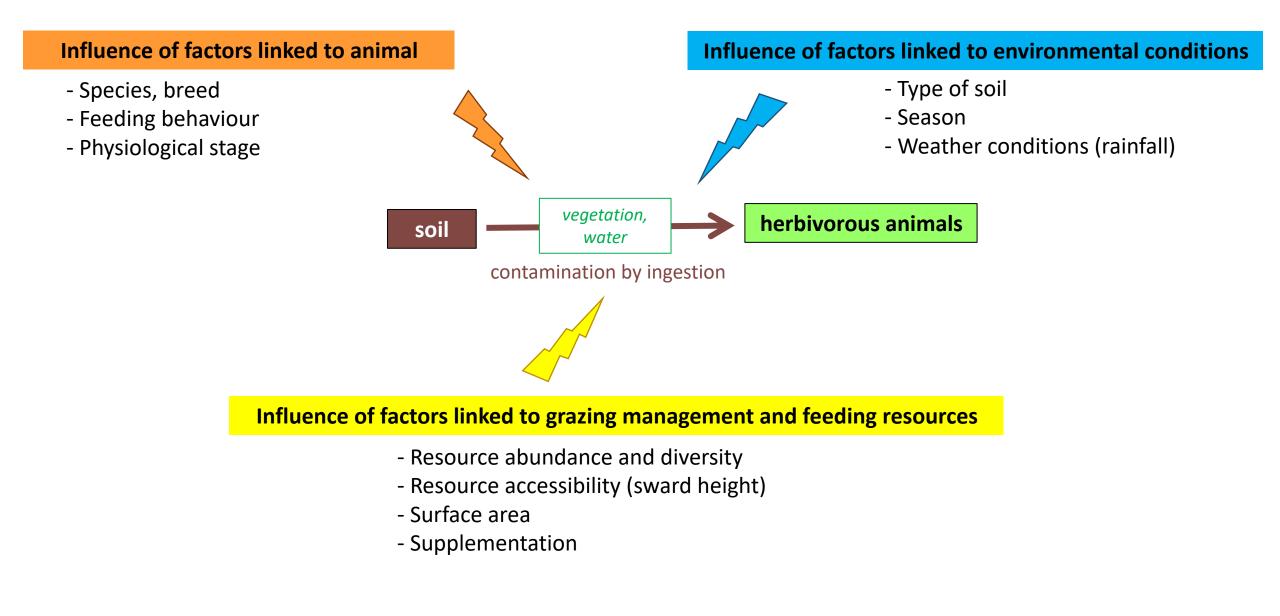
Conclusion & perspectives

- Characterisation of daily soil ingestion by dairy cows
- Dairy cow => not the most problematic animal for soil ingestion if grazing is not limiting
- But the high carry-over rate of persistent organic pollutants to milk can make even small soil ingestions far from harmless (several sanitary crisis in the past)

⇒Reference data for risk assessment

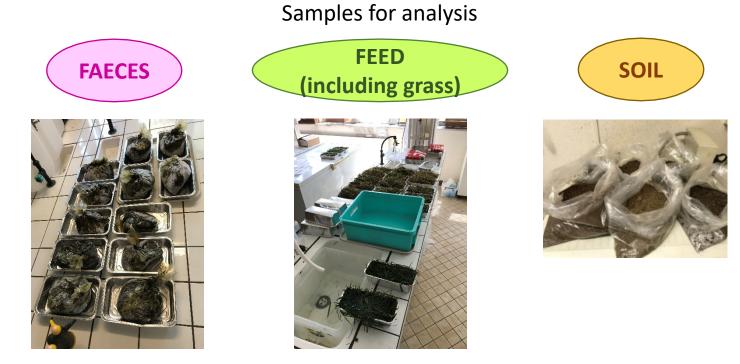
- Temporal variations due to housing, weather and grazing conditions
- Feed supply during difficult pasture conditions has shown to be an efficient practice to maintain low levels of soil ingestion and ensure food safety

⇒**Practical recommendations** for farmers



Acknowledgements:

- Technical staff of La Bouzule for dairy cow care and management
- Pamela Hartmeyer (URAFPA, University of Lorraine)

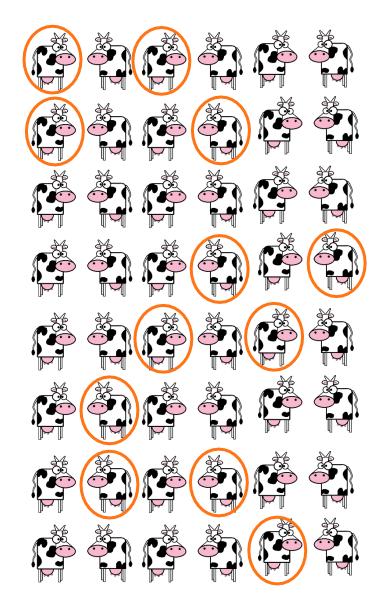

Additional slides if necessary for discussion/questions

Variation factors of soil ingestion in herbivorous

Methodology for daily soil ingestion estimation

- Soil marker: titanium Ti
- indigestible
- $[Ti]_{soil} \sim 8000 \ \mu g/g >>> [Ti]_{feed} \sim 10-100 \ \mu g/g$

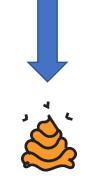
• Adapted from *Beyer et al. (1994)*:


soil ingestion (% of total DM intake) = $\frac{[Ti]_{feed} - [Ti]_{faeces} + DM dig \times [Ti]_{faeces}}{DM dig \times [Ti]_{faeces} - [Ti]_{soil} + [Ti]_{feed}}$

DMdig = dry matter digestibility

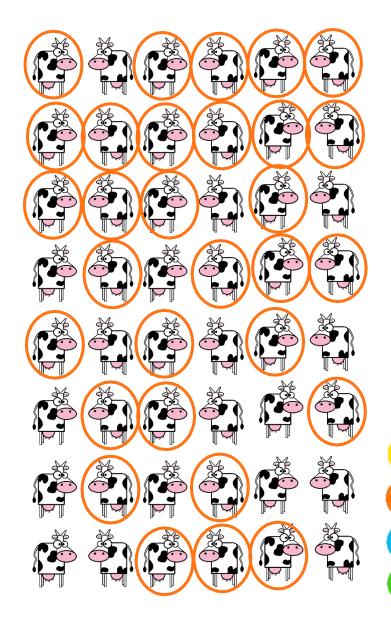
Dairy cow herd of La Bouzule farm (n=75)

Herd-scale monitoring over a year


identification of 12 cows representative of the herd

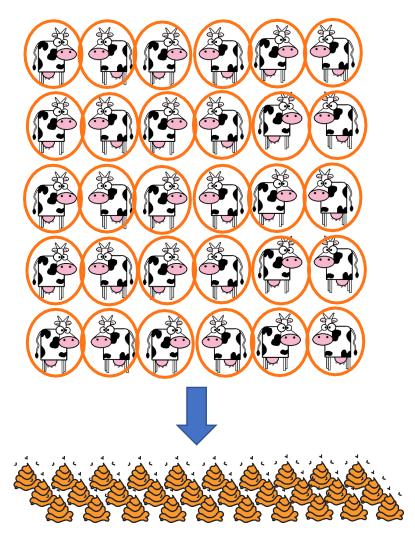
(and among those that will remain the longest in lactation)

individual faeces sampling every 2 weeks (monthly in winter)


- ⇒To analyse **temporal variability** according to different factors:
- Outdoor vs indoor
- Outdoor in different conditions (grass availability, soil moisture, ...) => weather/season effect
- Different diets

creation of a composite faecal sample from 12 individual samples for each date

Dairy cow herd of La Bouzule farm (n=75)


Individual monitoring on 4 dates

selection of 30 cows within the herd (including the 12 cows monitored over the year)

- ⇒To analyse interindividual variability in 4 contrasted situations (different seasons):
- July: few grass, dry soil
- Sept: few grass, wet soil
- Jan: barn without outside access
- April: abundant grass, dry soil

individual faeces sampling on 4 dates (monthly in winter)

Comparisons between species

herbivorous

omnivorous

Animal model		Daily soil ingestions		References	\Rightarrow A minimum
	g DM	g DM / 100 kg BW	g DM / kg MW		ingestion of soil has to be integrated in
Sport horses (strip grazing)	543 - 648	89 - 107	4.4 - 5.3	Jurjanz et al. 2021	risk assessments
Dairy cows	0 - 380	0 - 58	0 - 3.0	The present study	
Dairy cows (strip grazing)	7 170 - 830	28 - 145	1.4 - 7.1	Jurjanz et al. 2012	Variation factors:
Growing bulls (tether grazing)	73 - 159	27 - 98	1.1 - 3.5	Jurjanz et al. 2017 Collas et al. 2019, 2020	 herbage offer & supplement,
Rabbits (mobile cages)	4	72	1.1	Jurjanz et al. 2019	 season & soil surface moisture,
Chicken	0.1 - 4.7	8.7 - 236	0.09 - 2.8	Jurjanz et al. 2014, 2015	- foraging behaviour,
Lactating sows	300	131	5.1	Jurjanz & Roinsard 2014	- etc.
Growing pigs	 116 - 171	368 - 548	8.7 - 12.9	Collas et al. 2023	