Breath analysis in dairy cattle: going beyond methane emission

István Fodor¹, Elaine van Erp-van der Kooij², Ingrid van Dixhoorn³

¹ Animal Breeding and Genomics, Wageningen University and Research; ² Department of Animal Husbandry, HAS green academy; ³ Animal Health and Welfare, Wageningen University and Research

Breath analysis in dairy cattle – Why?

- Non-invasive
- Near-real time
- Reflects blood volatiles

Tsou et al., 2021

Breath analysis in dairy cattle – Why?

- Non-invasive
- Near-real time
- Reflects blood volatiles
 - Ethanol breath test
 - Nitric oxide ~ asthma¹
 - Acetone ~ diabetes²

Systematic review

Which diseases have been studied using breath or ructus composition in dairy cattle?

What is the authors' **conclusion** on the ability to distinguish diseased vs. not diseased dairy cattle based on breath or ructus composition?

Systematic review

Include:

- Dairy cattle (any maturation stage)
- Breath/ructus composition
- Diseased vs. control (or self-control)
- Individual breath/ructus composition
 ~ disease status

TY & RESEARCH

Systematic review

Include:

- Dairy cattle (any maturation stage)
- Breath/ructus composition
- Diseased vs. control (or self-control)
- Individual breath/ructus composition
 ~ disease status

No studies found on using ructus gas composition to distinguish diseased vs. not diseased

Trends in publication

Calves: 75% infectious Cows: 80% metabolic

Avg. **2.1 farms** (median: 1, range: 1-8) Avg. **18.7 animals** (T + C) (median: 12, range: 2-77)

pulmonary inflammation oxidative stress

brs virus

mycobacterium bovis

pulmonary inflammation oxidative stress

brs virus

mycobacterium bovis

100% of studies **positive** conclusion

Case study 1 – Dynamics of ketone bodies in cows developing ketosis (pilot)

7 cows (all parity 2+) – blood, urine, milk, breath 1 pre-partum sample (Day -17 to Day -3) + post-partum samples up to Day 7

Nostril sampler → nalophan bag
Rumen contractions monitored by palpation
(→ sampling stopped)

Van Erp-Van der Kooij et al., 2023 10

Case study 1 – Dynamics of ketone bodies in cows developing ketosis (pilot)

WAGENINGEN UNIVERSITY & RESEARCH Van Erp-Van der Kooij et al., 2023 11

Case study 1 – Dynamics of ketone bodies in cows developing ketosis (pilot)

- Within-cow trend more important than absolute value
 - Ketosis (BHB ↑): increasing breath acetone
- High between-cow variations in breath acetone level

 \rightarrow Longitudinal measurements (\leftrightarrow 1x)

Case study 2 – Breath analysis for NEB and postpartum diseases

55 cows (parity 1: n = 11, parity 2+: n = 44) 2 weeks pre- to 6 weeks post-partum

Automated breath measurements in the concentrate feeder Data-driven separation of eructation vs. non-eructating period

De Bruijn et al., in preparation

Case study 2 – Breath analysis for NEB and postpartum diseases

Respiratory Exchange Ratio (RER; CO₂/O₂, V/V%)

- Reflects source of energy
- Own fat reserves used \rightarrow lower RER expected

De Bruijn et al., in preparation

Case study 2 – Breath analysis for NEB and postpartum diseases

Respiratory Exchange Ratio (RER; CO₂/O₂, V/V%)

- Reflects source of energy
- Own fat reserves used \rightarrow lower RER expected

Higher BCS loss – lower RER

Ketosis (clinical scoring + blood) – lower RER

De Bruijn et al., in preparation

Conclusions

• Potential to be applied as a non-invasive & near-real-time tool

Conclusions

- Potential to be applied as a non-invasive & near-real-time tool
- We are just starting to understand breath biomarkers
 - Diagnostic value?
 - Early diagnosis?

Conclusions

- Potential to be applied as a non-invasive & near-real-time tool
- We are just starting to understand breath biomarkers
 - Diagnostic value?
 - Early diagnosis?
- Development could be synergistic with upscaling methane measurements in the future (similar sampling, different timing)

Thank you!

But cattle are ruminants...

Eructation

Non-eructating period

But cattle are ruminants...

Inhalation of eructated gasses

Data-driven **separation** of the two periods is possible

