

COMBINING ULTRA-WIDEBAND LOCATION AND ACCELEROMETER DATA FOR CATTLE BEHAVIOUR MONITORING

S. Benaissa, F.A.M. Tuyttens, D. Plets, L. Vandaele, L. Martens, W. Joseph, B. Sonck

said.benaissa@ugent.be

<u>CONTENTS</u>

- Introduction
 - Context, motivation, objectives
- Experiment 1: Static validation of the location system
- Experiment 2: Behaviour monitoring
- Applications
- Conclusions and future work

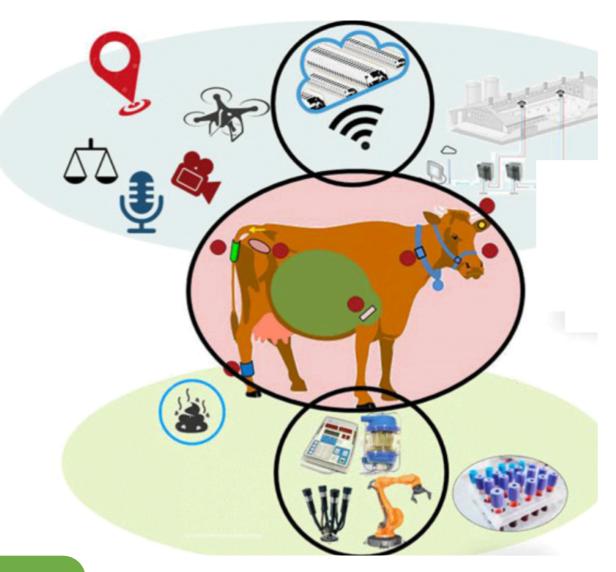
CONTEXT AND MOTIVATIONS

Productivity and requirements

Health, (re)production and welfare

Animal behaviour

livestock handling


Disease detection

CONTEXT AND MOTIVATIONS

Commercial PLF systems

Average accuracy

Accelerometer data alone


Limited number of behaviours

Limited applications

Less frequently expressed behaviours

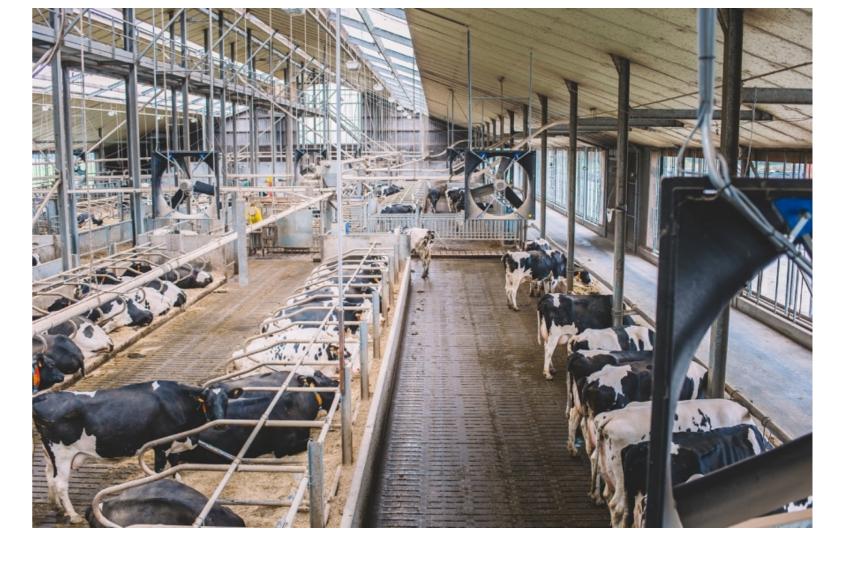
OBJECTIVES

Determine the functional area in which the animal is located

Considered a limited number of behaviours

Improved cattle behaviour monitoring systems

- Higher classification accuracy
- Classify less frequently expressed behaviours (drinking, eating concentrate...)

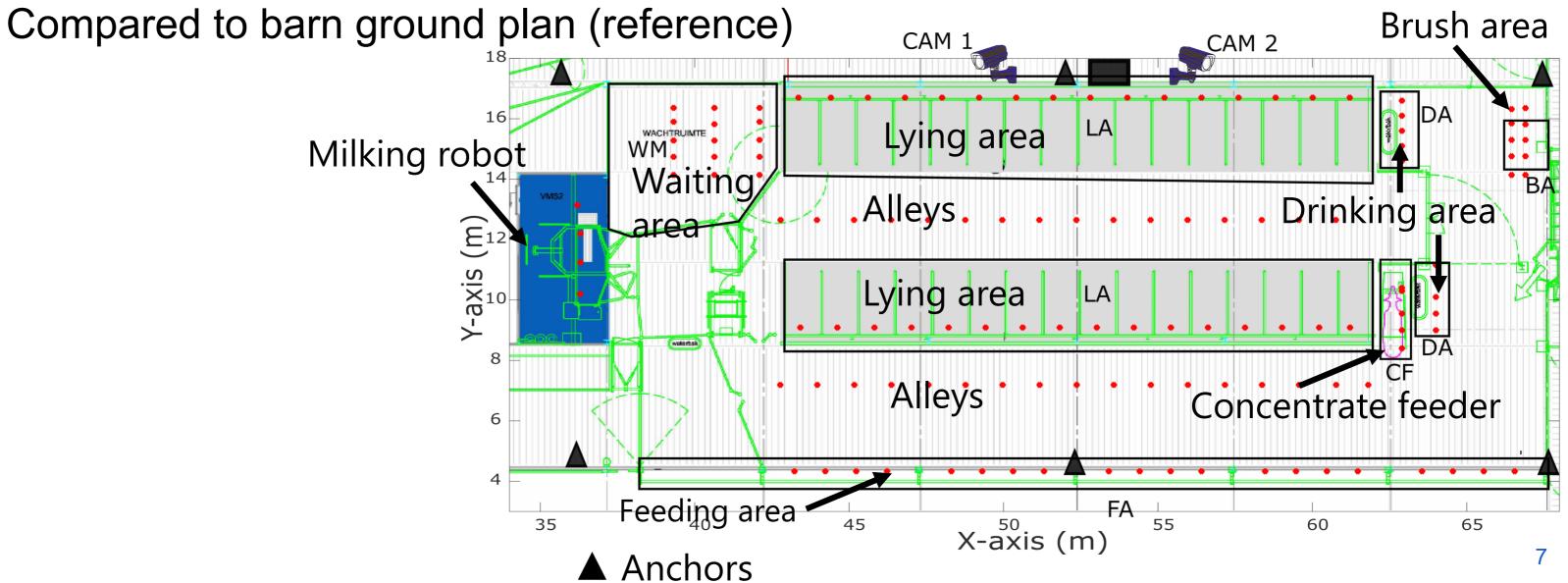

HOUSING CONDITIONS AND TRACKING SYSTEM

Animals and housing

- 30 cows
- Free-stall barn (ILVO, Belgium)
- Automatic Milking Robot (VMS300, Delaval)

Tracking system

- Pozyx system (Pozyx, Belgium)
- Location 2 Hz
- Accelerometer 12.5 Hz
- Accuracy of 10-30 cm (Pozyx)

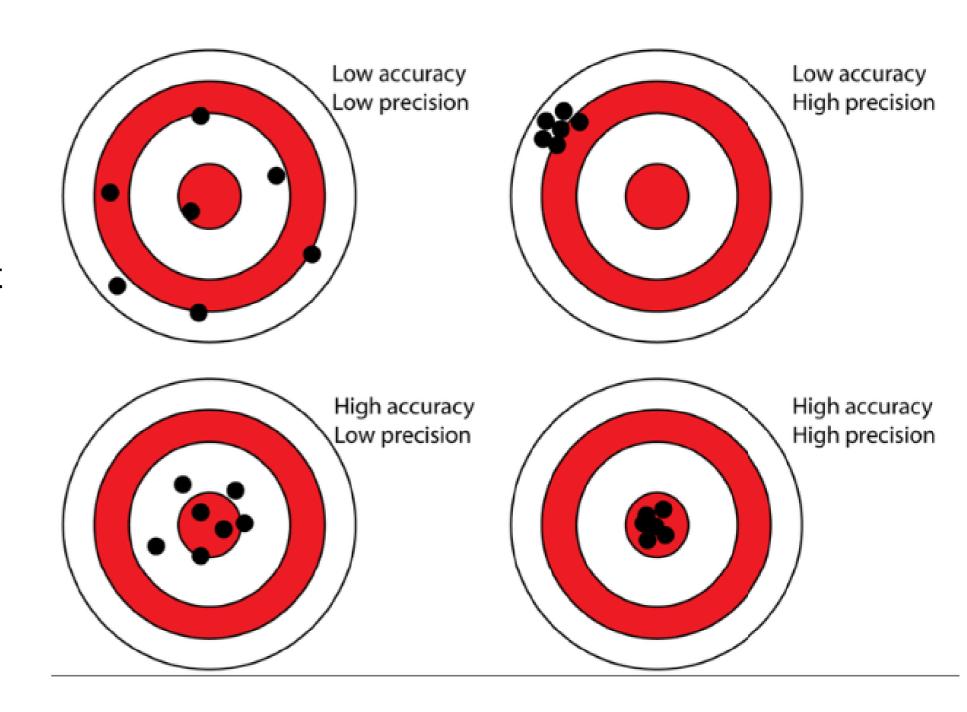


Dimensions (mm) 50x42x15 Weight 21 g

EXPERIMENT 1

- Static validation of location system
 - Without cows, tag at fixed locations
 - Different areas of the barn
 - 2 min per location (120 samples)

EXPERIMENT 1


- Static validation of location system
 - Accuracy and precision

Accuracy =
$$\frac{1}{N} \sum_{k=1}^{k=N} \sqrt{\left(\widehat{X}_k - X\right)^2 + \left(\widehat{Y}_k - Y\right)^2}$$

How much the samples are close to the target

Precision =
$$\sqrt{\frac{1}{N} \sum_{k=1}^{k=N} (\widehat{X}_k - \overline{X})^2 + (\widehat{Y}_k - \overline{Y})^2}$$

How much the samples are close to each other

EXPERIMENT 1: RESULTS AND DISCUSSION

Experiment 1: Static validation of location system

Areas	Accuracy (mean ± SE, cm)			Precision (mean ± SE, cm)		
	X-axis	Y-axis	2D (XY)	X-axis	Y-axis	2D (XY)
Feeding	8.3 ± 1.4	17.3 ± 3.8	21.0 ± 3.6	5.0 ± 0.6	7.6 ± 1.1	9.1 ± 1.2
Lying cubicles	7.6 ± 1.2	15.3 ± 2.2	18.6 ± 2.1	4.8 ± 0.4	6.5 ± 0.7	8.2 ± 0.8
Alleys	6.0 ± 1.1	9.6 ± 1.3	12.6 ± 1.3	4.8 ± 0.7	6.0 ± 0.9	8.9 ± 1.1
Drinking area	15.5 ± 3.6	21.3 ± 6.0	29.6 ± 5.3	10.4 ± 1.8	11.0 ± 2.0	15.2 ± 2.6
Concentrate feed	14.3 ± 4.5	22.0 ± 9.0	28.8 ± 8.1	9.6 ± 1.3	12.6 ± 1.6	15.9 ± 2.0
Brushing area	4.0 ± 1.1	17.4 ± 2.8	18.2 ± 2.7	6.3 ± 0.5	6.1 ± 0.5	6.8 ± 0.7
Wait for milking	11.4 ± 2.2	8.37 ± 2.5	15.5 ± 2.8	7.4 ± 1.3	7.0 ± 1.5	10.3 ± 2.0
Milking robot	74.9 ± 19.7	34.9 ± 12.9	86.8 ± 17.8	34.9 ± 9.8	18.3 ± 3.0	39.6 ± 10.0
Average (Barn)	10.4 ± 1.3	16.0 ± 1.3	21.2 ± 1.6	6.8 ± 0.6	7.5 ± 0.5	10.4 ± 0.8

- The location system presented high accuracy 21 cm
- The accuracy was highest for the alleys and lowest for the milking robot
- =>Covered with a concrete ceiling (signal attenuation)

EXPERIMENT 2: BEHAVIOUR MONITORING

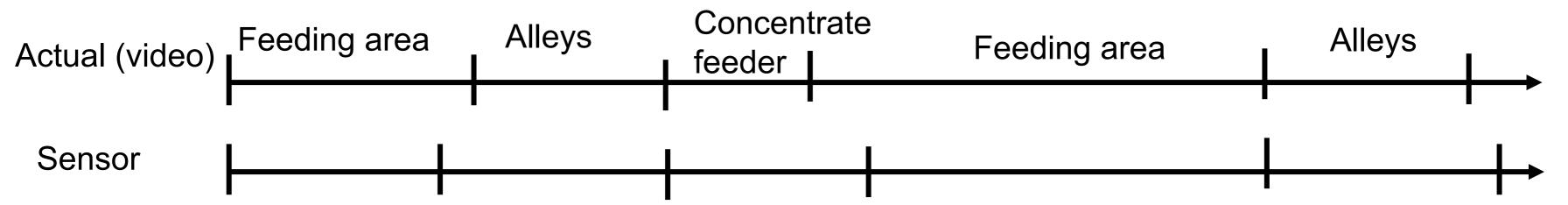
Data collection

- Tags attached to collars, 30 cows, 5 days
- Video recording for validation (golden standard)

Data processing

- Step 1: area detection (location data)
- Step 2: behaviour classification (accelerometer data, Decision tree algorithm)

Areas (location)	Behaviours (accelerometer)
Alleys Drinking area Wait for milking area Milking robot Lying area Concentrate feeder Feeding area	Ruminating, resting, other activity Drinking, resting, other activity Ruminating, resting, other activity Eating concentrate, other activity Ruminating, resting, other activity Eating concentrate, other activity Feeding, resting, other activity

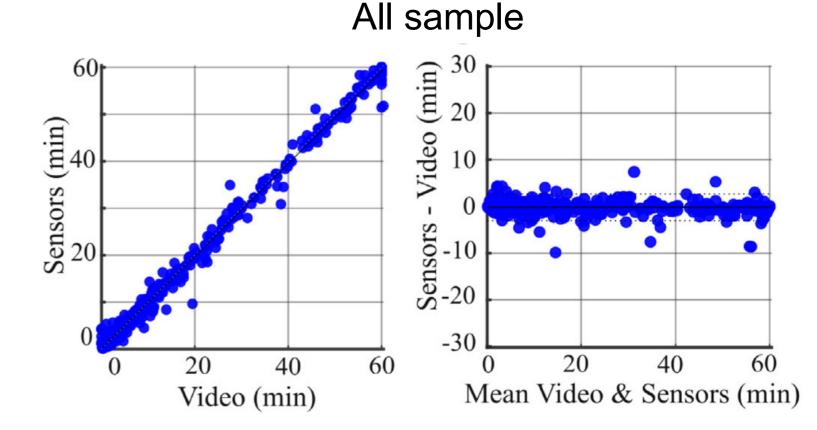


EXPERIMENT 2

Performance analysis

123 hours were annotated using ELAN software

	Video	Sensor
Feeding area sample 1	20 min	18 min
Alleys sample 1	7 min	9 min
Concentrate feeder sample 1	3 min	5 min
Feeding area sample 2	25 min	22 min
Alleys sample 2	11 min	13 min



=>Bland-Altman plot (correlation and difference plot): R2, RMSE, CV (Coefficient of variation)

RESULTS AND DISCUSSION

Locating the animals into the correct functional areas:

- Overall (all samples) RMSE = 1.4 min
- Best: lying area (large area, cows not moving)
- Worst: concentrate feeder

Area/behaviour	Samples N	R ² (-)	RMSE (min)	CV (%)
Feeding area	97	0.99***	1.5	5.3
Lying area	98	0.99***	1.5	3.5
Wait for milking	59	0.98**	2.0	8.6
Milking robot (VMS)	48	0.95*	0.5	9.0
Drinking area	67	0.93**	0.7	24.0
Concentrate feeder	43	0.85*	0.7	33.0
Alleys	98	0.96*	1.5	19.0
All samples (Barn)	510	0.99***	1.4	7.5

*P < 0.05, **P < 0.01, ***P < 0.001, no asterisks mean P > 0.05

RESULTS AND DISCUSSION

Behaviour (location+ accelerometer)

- Overall RMSE 1.6 min
- Improved RMSE feeding time and ruminating time compared to the accelerometer data alone (2.6 min [1] to 1.4 min).

Detection of eating concentrates and drinking

Area/behaviour	Samples N	R ² (-)	RMSE (min)	CV (%)
Feeding time	83	0.99***	1.4	5.6
Drinking time	50	0.85**	0.7	25.0
Ruminating time	86	0.99***	1.8	7.7
Resting time	90	0.98**	1.8	13.0
Eating concentrates	59	0.90*	0.7	18.0
Other activity	83	0.83**	1.4	30.0
All samples	454	0.99***	1.6	12.0

*P < 0.05, **P < 0.01, ***P < 0.001, no asterisks mean P > 0.05

[1] Benaissa, S., Tuyttens, F.A.M., Plets, D., Cattrysse, H., Martens, L., Vandaele, L., Joseph, W., Sonck, B., 2019a. Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Applied Animal Behaviour Science 211, 9–16.

Sensors (min)

20

Video (min)

40

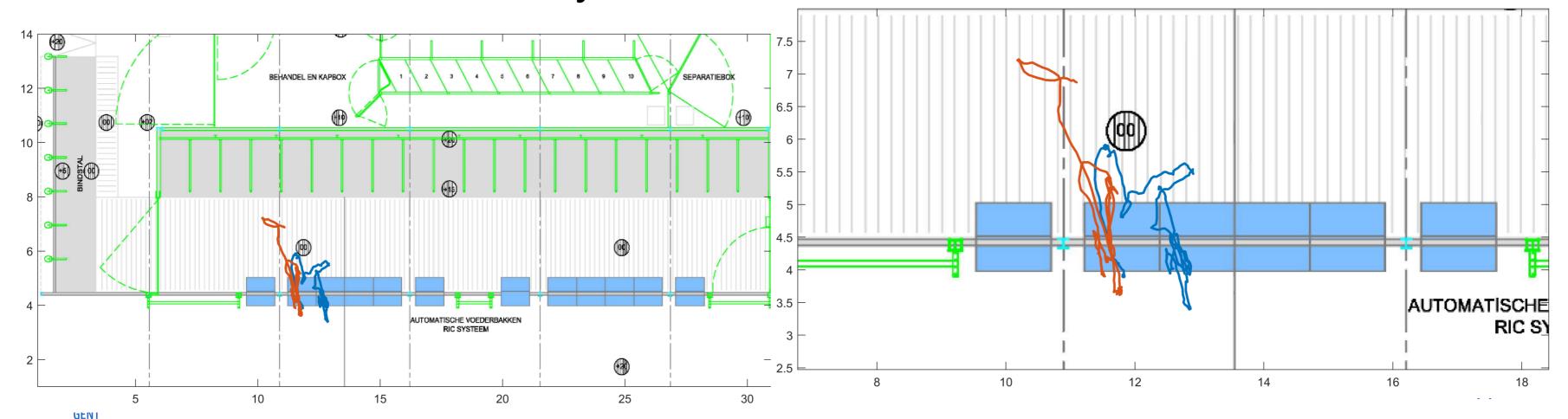
All sample

Video

Sensors -20

-30

20


40

Mean Video & Sensors (min)

60

APPLICATIONS

- Time in feeding area while not eating prolonged hunger
- Time in drinking area while not drinking ⇒ prolonged thirst
- Resting/ruminating outside lying area
 - → Alert the farmer about the animals that require attention
- Social behaviour analysis

CONCLUSION AND FUTURE WORK

- Potential of combining accelerometer and UWB location data
 - Robust behaviour monitoring system for dairy cattle
- Future work will include the tracking of the social interactions
 - → Still a challenge for current PLF systems
- Important step towards data integration from multiple data sources
- Improved production efficiency
- Animal welfare and sustainability

