

Genetic parameters of pig birth weight variability

Y. Salimiyekta^{1*}, S. B Bendtsen¹, K. V Riddersholm¹, M. Aaskov¹ and J. Jensen²

¹Danish Genetics, Lysholt Alle 10, 7100 Vejle, Denmark ²Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus, Denmark

> DAN|SH GENET|CS

Introduction

 Piglets' survival is a major problem from an economic and welfare point of view

Over the last decades, sows have been selected on
litter size that led to increase in preweaning mortality

Litter size in Danish sows increased by 0.6 piglets per year

11.7 live piglets/litter (2000) 17.5 (2019)

Problem with large litter size

Limitation in lactation feed intake (number of teat)

Introduction

Decreasing birth weight

Higher risk of still born

Introduction

Large litter size high variability in the size of piglet smaller piglet lower colostrum intake

4

Genetic Correlation

Introduction

	Litter size	N.parity	Growth during suckling	Pre weaning mortality
Birth weight variability	+	+		+

(Sell-Kubiak et al. 2015; ZHANG Tian et al. 2016; Quesnel et al. 2008)

Benefits of birth weight uniformity

Less mortality (more survival)

Better growth during suckling

All-in-all-out strategy which is important for farmers mainly because of growing- finishing facilities

Introduction

Objective

Estimation of genetic parameters of birth weight variability in Danish Landrace and Yorkshire in Danish Genetics pig populations

Data

Landrace

Sows: 1,686

Genotyped sow: 1,685

Farrowing: 2,127

Piglets: 31,266

Farrowed: 2019-2023

Animals in ped: 4,191

Yorkshire

Sows: 2,068

Genotyped sow: 2,068

Farrowing: 2,702

Piglets: 41,949

Farrowed: 2019-2023

Animals in ped: 5,228

Descriptive statistics

Birth weight variability (Kg)	Min	Mean	Max	SD.
Landrace	0.034	0.223	0.743	0.091
Yorkshire	0.035	0.220	0.724	0.087

Distribution

Distribution

Birth weight variability

sex

Statistical Model

N.parity

live born

hys_f

mean_BW

animal

pe

residual

ssGBLU P Al-**REML**

DMU J.Jensen & P.Madsen 2013

Variance Components

	σ_a^2	σ_{Pe}^2	σ_e^2	h^2
Landrace	0.00062	0.00108	0.00598	0.08
Yorkshire	0.000705	0.00085	0.00560	0.10

Selection Response

	Landrace	Yorkshire
Selected females/ G.	1,192	1,497
Selected males/ G.	206	181
Mean of live born/ litter	15	16
σ_p^2	0.0076	0.0071
h^2	80.0	0.10
Economic weight	-1	-1
Selection response (g)	-21	-23

Selection Response

Conclusion

Birth weight variability is heritable

Balance between mean and variability of birth weight

Lower variability in birth weight

Less preweaning mortality

Bether growth during suckling

• Estimation of genetic correlation between birth weight variability and some traits in our index equation

Computing selection response by considering all traits in the index equation and their economic weights

Adding birth weight variability in our selection goals

Next Steps

Genetic parameters of pig birth weight variability

Y. Salimiyekta^{1*}, S. B Bendtsen¹, K. V Riddersholm¹, M. Aaskov¹ and J. Jensen²

¹Danish Genetics, Lysholt Alle 10, 7100 Vejle, Denmark ²Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus, Denmark

> DAN|SH GENET|CS

