

Genetic response of red yeast supplementation in feed to mycotoxin contamination in laying hens

Shahrbanou Hosseini^{1,2*}, Bertram Brenig^{1,2}, Wanaporn Tapingkae^{3,4}, Kesinee Gatphayak^{3,4}

¹Department of Animal Sciences, University of Goettingen, Göttingen, Germany
²Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
³Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
⁴Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand

Mycotoxins are toxic secondary metabolites produced by filamentous fungi that contaminate agricultural products

- Feed and food contaminated with toxic fungi can cause disease and death in animals and humans, raising global concerns for food safety and health
- Agricultural products can be contaminated simultaneously with multiple mycotoxins that can increase the risk of adverse health effects in animals and humans

Nleya et al., 2018

Chen et al., 2017

Mycotoxin

Introduction

- Feed intake
- Feed efficiency
- Weight gain
- Reproductive performance

Increase

- Impaired immunity
- Higher rate of mortality

- Harmful fungi are the major cause of feed contamination in poultry, which can affect different organs such as liver, kidneys, spleen, gastrointestinal tract
- Consumption of contaminated feed results in birds health damage, significant economic losses in the poultry industry, and a safety risk to human consumers

Introduction

- So far, different strategies have been developed to control mycotoxin contamination, which classified into:
- preharvest strategies in the field to prevent mycotoxin production range from good agricultural practices to the use of biological control agents
- > postharvest strategies to control mycotoxin contamination in the process of harvesting, storage, and processing

4

Introduction

- Biological agents have proven to be more effective, specific, and environmentally friendly to control mycotoxin contamination
- Yeast is a promising detoxification strategy for the poultry feed industry, which being able to degrade mycotoxin in diets

- Red yeast is a novel yeast used as a biological binder of mycotoxins in poultry feed that:
 - > Absorb mycotoxin through the cell wall
 - > Acts as a prebiotic with antioxidant properties
 - Possess high nutritional value to improve production traits in poultry species

Tapingkae et al., 2022; Husakova et al., 2021

Objectives

- Since poultry are fed with a mixture of various grains and oilseed meals, they are at higher risk of coexposure to a combination of different mycotoxins
- However, the genetic mechanism underlying detoxification processes in poultry in response to multiple mycotoxins and its interaction with organic binder remains to be elucidated

- The main goal of this study was to investigate the genetic mechanism underlying feeding with red yeast supplementation in interaction with multiple mycotoxins in laying hens using RNA sequencing
- To gain more insights for the development of counter strategies to eliminate the adverse effects of mycotoxins in poultry species and increase food safety to avoid health concerns for human consumers

Materials and Methods

Differentially expressed genes in red yeast versus control (RY vs. CON)

Differentially expressed genes in mycotoxins versus control (MT vs. CON) and red yeast + mycotoxins versus control (RY+MT vs. CON)

Significantly differentially upregulated↑ and downregulated↓ genes comparing MT vs. CON and RY+MT vs. CON

Top significant differentially expressed unique genes in MT vs. CON and RY+MT vs. CON

Candidate genes involved in mycotoxicity in MT vs. CON and RY+MT vs. CON

Candidate unique genes involved in mycotoxicity in MT vs. CON

Candidate unique genes involved in mycotoxicity in RY+MT vs. CON

Significantly enriched KEGG pathways in MT vs. CON and RY+MT vs. CON

Enriched pathways MT vs. CON

Enriched pathways RY+MT vs. CON

Significantly enriched gene ontology (GO) terms in MT vs. CON and RY+MT vs. CON

Enriched GO MT vs. CON	-log1	0(p _{adj})	Enriched GO RY+MT vs. CON
	11 10 9 8 7 6 5 4 3 2 1 0	0 1 2 3 4 5 6 7 8 9 10 11	
secondary alcohol biosynthetic	f	•	cholesterol biosynthetic
cholesterol biosynthetic	· · · · · · · · · · · · · · · · · · ·	— \	cellular amino acid biosynthetic
sterol biosynthetic	• •	—	secondary alcohol metabolic
secondary alcohol metabolic	÷ ====	—	cholesterol metabolic
cholesterol metabolic	+	— •	sterol metabolic
sterol metabolic	•	—	alpha-amino acid catabolic
cellular modified amino acid metabolic			cellular amino acid catabolic
alpha-amino acid metabolic	-		steroid metabolic
steroid metabolic	f		alcohol metabolic
alcohol metabolic	•	•	carboxylic acid catabolic
cellular amino acid metabolic			organic acid catabolic
coenzyme metabolic			organic acid biosynthetic
organic acid biosynthetic	•		carboxylic acid biosynthetic
carboxylic acid biosynthetic	•		alpha-amino acid metabolic
organic hydroxy compound metabolic	•	•	organic hydroxy compound metabolic
monocarboxylic acid metabolic			small molecule catabolic
lipid biosynthetic			monocarboxylic acid metabolic
cofactor metabolic			cellular amino acid metabolic
drug metabolic			drug metabolic
small molecule biosynthetic	•		small molecule biosynthetic
	90 80 70 60 50 40 30 20 10 0	0 10 20 30 40 50 60 70 80 90	1
	Number o	of gene	

Conclusions

- This study indicated expression changes of genes involved in detoxification mechanism in response to feeding with multiple mycotoxins.
- Red yeast as a feed additive significantly reduced the adsorption of biologically active mycotoxins in feed.

- Red yeast can act as a mycotoxin binder and can be used as an effective strategy in the poultry feed industry.
- This feeding strategy can eliminate the adverse effects of mycotoxins to animals and increase food safety for human consumers.

Dr. Shahrbanou Hosseini

Molecular Biology of Livestock and Molecular Diagnostics

Department of Animal Sciences

University of Goettingen

Göttingen, Germany

shahrbanou.hosseini@uni-goettingen.de

frontiers	S Frontiers in Microbiology Sections ~ Articles Research Topics Editorial Boar
	ORIGINAL RESEARCH article
	Sec. Food Microbiology Volume 14 - 2023 doi: 10.3389/fmicb.2023.1254569
	Genetic assessment of the effect of red
	yeast (Sporidiobolus pararoseus) as a feed
	additive on mycotoxin toxicity in laying
	hens
	💼 Shahrbanou Hosseini ^{1, 2*} 💼 Bertram Brenig ^{1, 2} 💽 Sunattinee Winitchakorn ³
	Chanidapha Kanmanee ³ M Orranee Srinual ^{3,4} M Wanaporn Tapingkae ^{3,4}
	Kesinee Gatphayak ^{3, 4}
	¹ Molecular Biology of Livestock and Molecular Diagnostics, Department of Animal Sciences, University of Goettingen,
	Germany ² Institute of Veterinary Medicine, Faculty of Agricultural Sciences, University of Göttingen, Germany ³ Department of Animal and Aquatic Sciences, Chiang Mai University, Thailand ⁴ Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Thailand
NN	
1 እ	TOUR ATTENTS
UW	
	VIK XOO AELA

THA

Top significant differentially expressed common genes in MT vs. CON and RY+MT vs. CON

Candidate common genes involved in mycotoxicity in MT vs. CON and RY+MT vs. CON

