The dietary effects of a brown seaweed and its extract on dairy cow performance and methane emissions

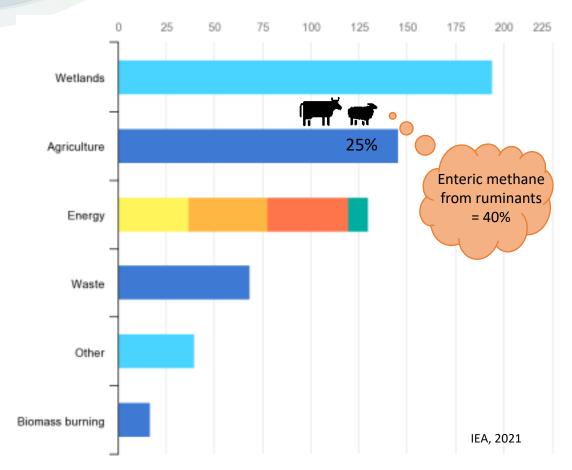
Kayley Barnes¹, Tianhai Yan², Xianjiang Chen², Maria Hayes³, Sharon Huws¹, Katerina Theodoridou¹

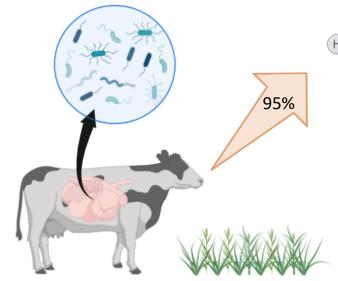
¹Queen's University Belfast

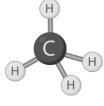
²Agri-Food and Bioscience Institute

³Teagasc Food Research Centre

KBarnes06@QUB.ac.uk







Enteric methane emissions

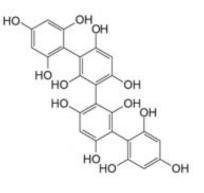
Sources of methane emissions

- Plant material consumed
- 2 Bacterial fermentation
- $\mathbf{3} \ \ \mathbf{H}_2 + \mathbf{CO}_2$
- 4 Methanogens
- **⑤** CH₄ out

Mitigation strategies:

- 1. Direct effect on methanogenic archaea community.
- 2. Indirect effect caused by the impact of a strategy on substrate availability (H_2) for methanogenesis.

Northern Ireland:

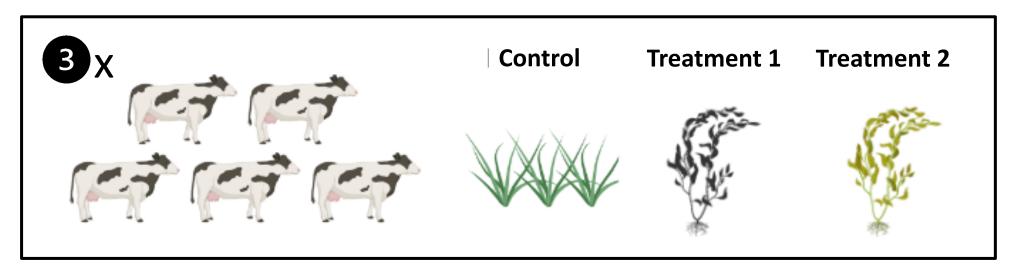

- 46% reduction in methane by 2050 from 1990 levels
- Ruminant production systems are a key focus area

Seaweed and its role in CH₄ mitigation

Bioactive compound	Activity
Polysaccharides	Anti-thrombotic, anti-coagulant, anti-cancer, anti- proliferative, anti-viral, and anti-complementary agent, anti- inflammatory, prebiotics
Peptides and Amino Acids	Anti-inflammatory, anti-bacterial, anti-tumoral, antinociceptive; etc anti-oxidative, anti-inflammatory, anti-tumor, hepatoprotective and neuroprotective
Polyphenols and Phlorotannins	Antioxidants, anti-methanogenic
Pigments	Colour or pigment enhancement
Fatty Acids	Resilience to stress, alter Omega 6/3 ratio
Halogenated compounds	Antibacterial, anti-tumoral, anti-methanogenic

Key study aims

Assess the effects of a selected brown seaweed and its extract on dairy cow performance and methane emissions


Evaluate any differences between seaweed and seaweed extract provision

Analysis of rumen fluid samples for changes in the microbiome, VFA and NH₃ production across dietary treatments

AFBI dairy cow study (3x3 Latin square)

- Feeding period = 21 days
- TMR diets with 60% grass silage and 40% concentrate (DM basis)
 - **Control:** Grass silage + concentrate
 - **Treatment 1:** grass silage + concentrate + 4% dried brown seaweed extract
 - Treatment 2: grass silage + concentrate + 4% dried brown seaweed
- Lodine level within legal limits for dairy production.

Measurements

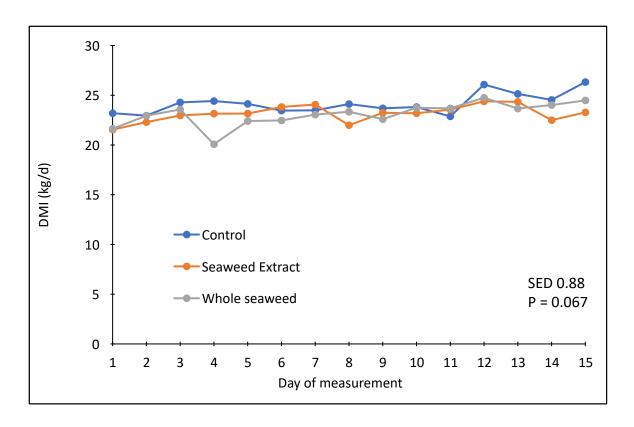

During the first 15 days of each period, cows were housed as a single group and gaseous exchange (CH₄, CO₂, O₂ and H₂) rates were measured using the Greenfeed system

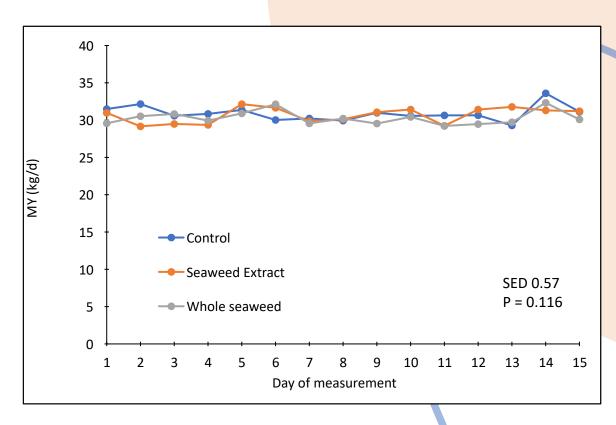
 Feed intakes recorded using Biocontrol Auto-feeders (3/treatment)


Liveweight and milk yield collected daily

Milk composition and TMR samples collected weekly

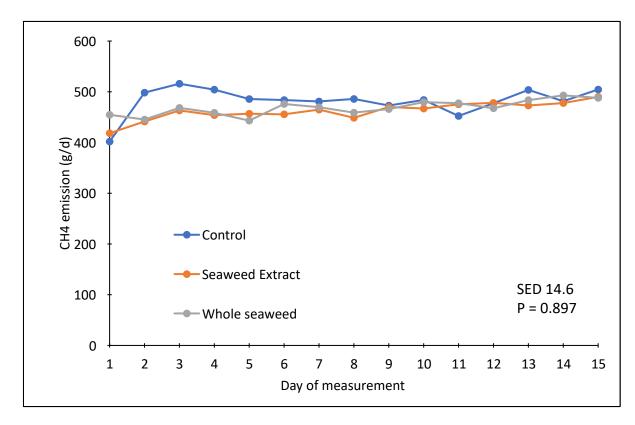
 Collection of rumen fluid and blood samples on day 21

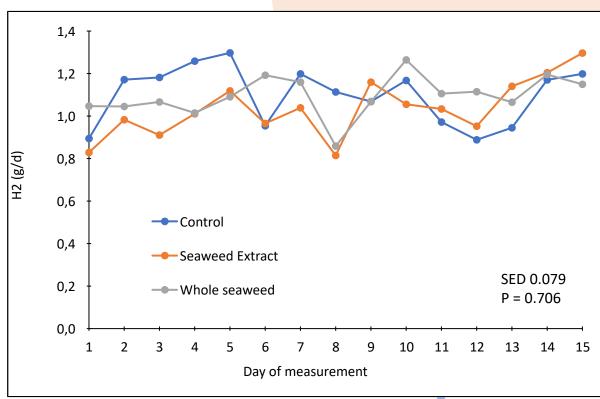




	Treatment										
Item	Control	Whole seaweed	Seaweed Extract	SED	P-value						
Animal measurement											
DM intake (kg/d)	24.6	23.8	23.5	0.88	0.067						
Milk yield (kg/d)	31.1	30.1	31.2	0.57	0.116						

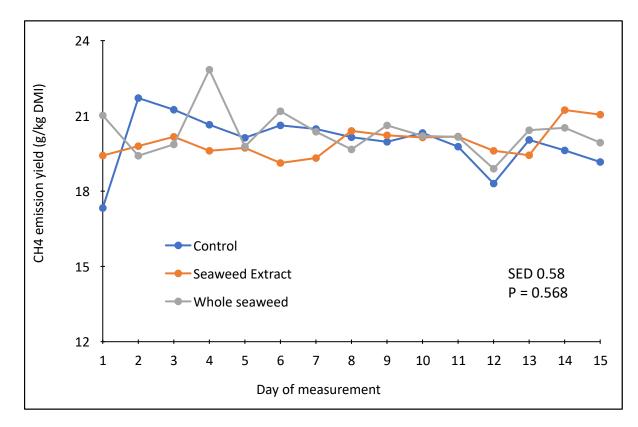
DMI intake and MY production (kg/d)

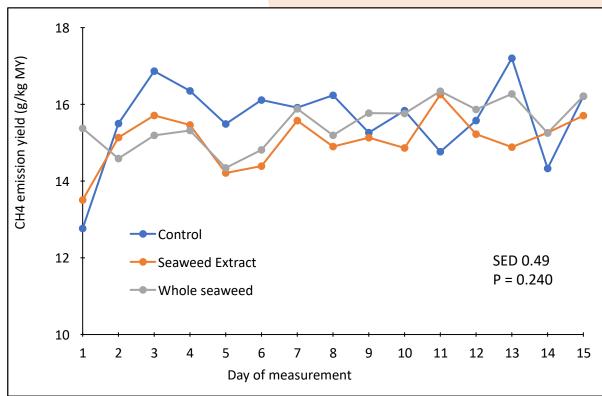




Daily changes in MY and DMI

Methane and H_2 emissions (g/d)

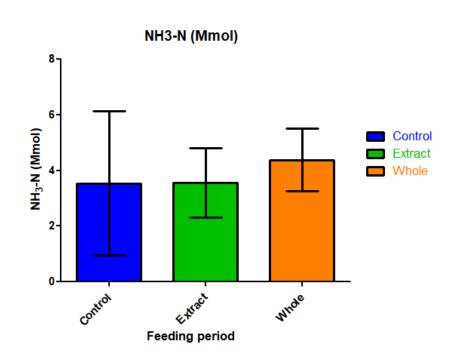


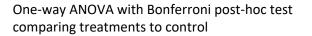


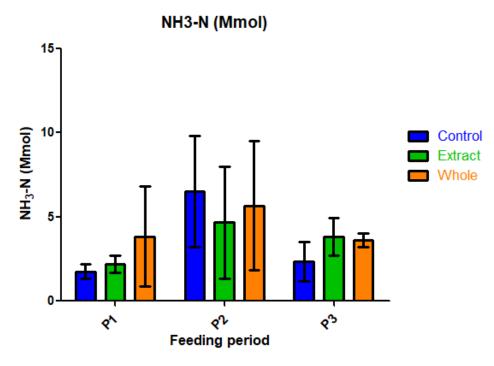
Daily changes of methane and hydrogen exchange rates

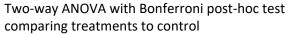
Methane emissions yield

Daily changes of methane emission yield

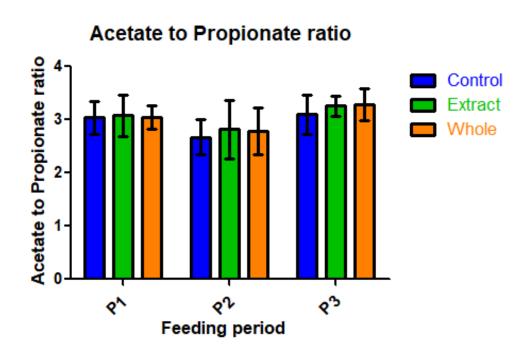

Results by feeding period

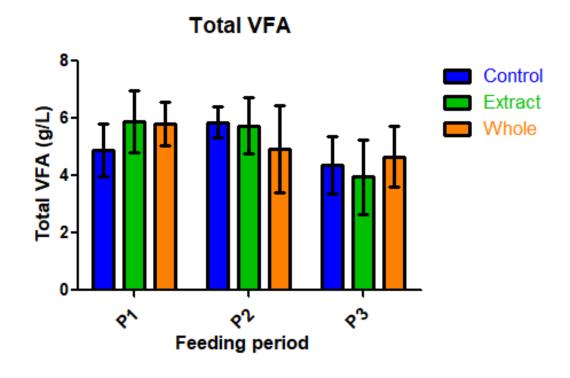



lko na		Treatment			CED	- I
Item	-	Control	Control Whole seaweed Seaweed Extract		— SED	P-value
Animal measurement						
DM intake (kg/d)	P1	25.1	24.0	23.2	1.55	0.471
	P2	24.9	24.5	23.5	1.73	0.724
	Р3	23.9	23.0	23.8	1.68	0.863
Milk yield (kg/d)	P1	33.0	30.8	29.1	2.11	0.222
	P2	32.1	30	32.4	2.74	0.627
	Р3	28.2	29.6	32.0	2.79	0.409
Gaseous exchange						
CH ₄ emissions						
g/d	P1	489.8	461.8	464.6	31.24	0.625
	P2	478.6	518.6	473.6	35.46	0.407
	Р3	478.5	462.9	489.5	36.56	0.770
g/kg DMI	P1	19.6	19.2	20.2	1.10	0.697
	P2	19.2	21.4	20.1	1.45	0.334
	Р3	20.3	20.1	20.5	1.35	0.957
g/kg MY	P1	15.0	15.1	16.1	1.24	0.640
	P2	15.0	17.8	14.8	1.71	0.190
	Р3	17.5	15.9	15.3	1.72	0.453
H_2 (g/d)	P1	1.05	0.91	0.81	0.139	0.255
	P2	1.09	1.28	1.35	0.198	0.428
N'S ERSITY	Р3	1.01	1.15	1.11	0.177	0.710


Ammonia (NH₃-N) concentration

No statistically significant differences across treatments within and across feeding periods. Variation as a result from feeding period (P<0.01).





Volatile fatty acid results

 No statistically significant differences across treatments or feeding periods

Conclusions

From preliminary analysis:

- Dietary inclusion (4% on DM basis) of seaweed or seaweed extract had no negative effects on DMI and MY
- No significant effect on methane emissions
- No significant effect on VFA or NH₃-N

Future work

- Digestibility analysis to assess the effect of each treatment and compare to methane production
- Phlorotannin quantification of seaweed and extract to aid explanation for results attained
- Assess the nutrient profile of the milk for any potential benefits for human consumption
- Continuation of *in-vitro* screening across seaweed species
- Evaluation of other seaweed species in-vivo

Thank you for your attention

Kayley Barnes Kbarnes06@QUB.ac.uk

Follow my LinkedIn for more updates!

