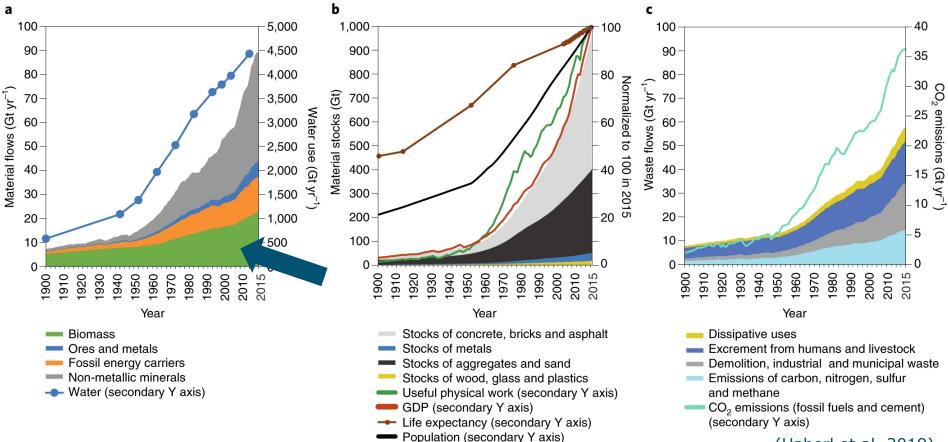
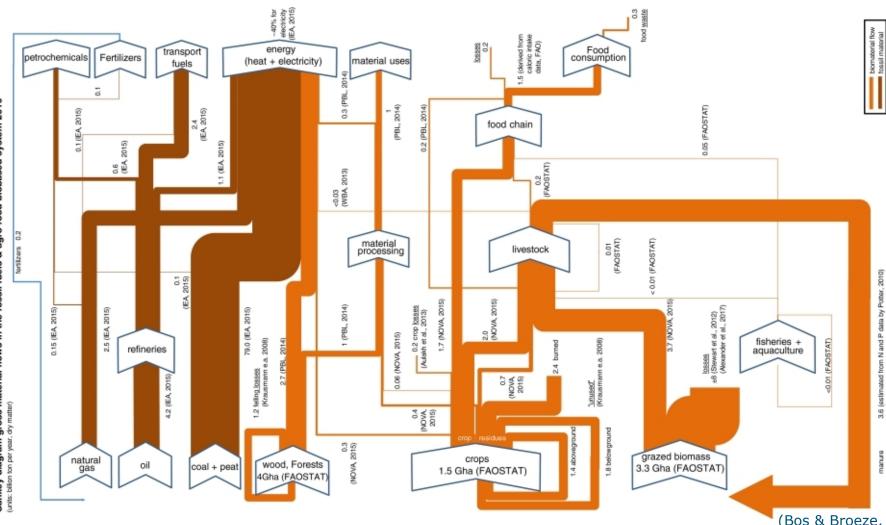
Circularity in livestock production: from theory to practice

Evelien de Olde, Ollie van Hal, Amber Groenewoud, Imke de Boer

Animal Production Systems group, Wageningen University & Research

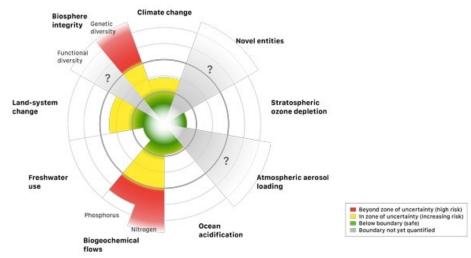


Content


- Ecological principles for a circular bioeconomy
- Analysing circular food systems
- Indicators for circularity at farm level
- A tool to assess circularity of Dutch dairy farms

Global social metabolism

(Haberl et al. 2019)


Sankey diagram gross material flows in the fossil fuels & agro-food-biobased system 2010 (units: billion ton per year, dry matter)

(Bos & Broeze, 2020)

4

A healthy planet

1. Safeguard the health of our agroecosystems

(Muscat et al. 2021, Nature Food)

- 1. Safeguard the health of our agroecosystems
- 2. Avoid non-essential products, losses & wastes of essential ones

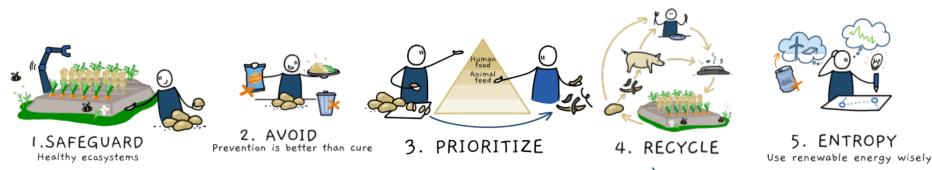
Healthy ecosystems

is better than cure

(Muscat et al. 2021, Nature Food)

- 1. Safeguard the health of our agroecosystems
- 2. Avoid non-essential products, losses & wastes of essential ones

(Muscat et al. 2021, Nature Food)


3. Prioritize biomass streams for human needs

- 1. Safeguard the health of our agroecosystems
- 2. Avoid non-essential products, losses & wastes of essential ones
- **3. Prioritize** biomass streams for human needs
- 4. Recycle inevitable & unavoidable biomass streams

- 1. Safeguard the health of our agroecosystems
- 2. Avoid non-essential products, losses & wastes of essential ones
- **3. Prioritize** biomass streams for human needs
- 4. Recycle inevitable & unavoidable biomass streams
- 5. Entropy reduce energy use and use renewables wisely

Circularity is ...

- ... effective use of available resources (land, biomass, water, nutrients, etc.)
- ... not a goal in itself but a means to stay within the planetary boundaries
- not nessarily local production
- ... required to safeguard the regenerative capacity of our planet for the future

Analysing circular food systems

- Food system models
 - FOODSOM

Farm-level indicators

Circular agriculture initiatives

Upcycling food leftover of livestock system and 0. van Hal **, I.J.M. de Boer W.J.J. Gerrits *, H.H.E. van Za	d productivity ^a , A. Muller ^b , S. de Vries	evier.com/locate/jclepro es through livestoc ^c , KH. Erb ^d , C. Schade	:k: Impact
Upcycling food leftover of livestock system and O. van Hal ^{a, *} , IJ.M. de Boer	rs and grass resource d productivity ^a , A. Muller ^b , S. de Vries nten ^a	es through livestoc ^c , KH. Erb ^d , C. Schado	:k: Impact
of livestock system and O. van Hal ^{a, *} , I.J.M. de Boer	d productivity ^a , A. Muller ^b , S. de Vries ^{nten a}	^c , KH. Erb ^d , C. Schado	
of livestock system and O. van Hal ^{a, *} , I.J.M. de Boer	d productivity ^a , A. Muller ^b , S. de Vries ^{nten a}	^c , KH. Erb ^d , C. Schado	
O. van Hal ^{a. *} , I.J.M. de Boer W.J.J. Gerrits ^c , H.H.E. van Za	nten ^a		er ^b ,
	Science of the Total Environme		
		nit 899 (2023) 165540	
250.053405849	Contents lists available	at ScienceDirect	
	Science of the Tota	al Environment	
ELSEVIER	journal homepage: www.else	vier.com/locate/scitotenv	
Recoupling livestock and environmental impacts	l feed production in	the Netherlands to	reduce
Benjamin van Selm ^{a,b,*} , Renska E. van Middelaar ^a , Imke J.M. d	e Hijbeek ^b , Martin K. van le Boer ^a	lttersum ^b , Ollie van Hal	lª, Corina
			KUNGL. VETENS
Ambio https://doi.org/10.1007/s13280-023-018	394-5		THE ROVAL SWEDISH ACADEMY OF
PERSPECTIVE			

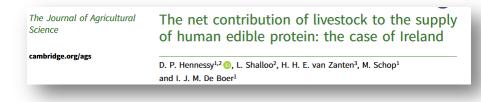
Jelle Silvius ©, Anne G. Hoogstra, Jeroen J. L. Candel, Evelien M. de Olde, Imke J. M. de Boer, Catrien J. A. M. Termeer

Analysing circular food systems

LCA studies tend to result in 2 recommendations

- To produce with lower GHG per kg product, increase yield, by improving feed quality
- To consume with lower GHG, shift to products with lower impact (e.g. chicken), also require higher feed quality

Improvement on product level ≠ improvement on food system level


> Analysing circularity requires a food systems lens

Indicators for circularity (models)

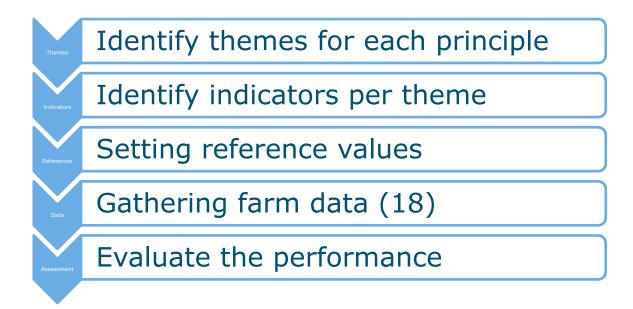
To express the effective use of resources

- Edible Protein Conversion Ratio (Wilkinson, 2011)
 - efficiency of producing Human Digestible Protein (HDP)
- Land Use Ratio (LUR) (van Zanten et al. 2016)
 - potential HDP from crops grown on land used to produce the livestock feed against the HDP in the livestock produce

Indicators for circularity (farms)

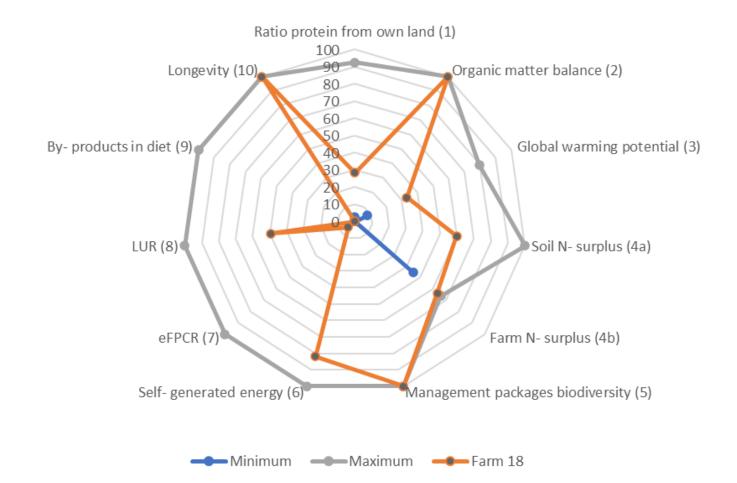
- Vision Ministry of Agriculture, Nature and Food Quality (2017)
- The Netherlands a leader in circular agriculture by 2030

- Projects to evaluate circular agriculture in farming practice
- What is effective use of land, water, manure, energy... (perspectives, contexts)


Agriculture, nature and food: valuable and connected

The Netherlands as a leader in circular agriculture

A tool to assess circularity in dairy farms



A tool to assess circularity in dairy farms

Theme	Indicator	Unit	
Land use	Ratio protein from own land	%	
Soil	Organic matter balance	%	
Air	Global warming potential	CO2-eq in kg per kg milk	
	Soil + farm N-surplus	Kg per ha + kg per L milk	
Biodiversity	Management packages landscape elements (OTWTPP)	%	
Finite resources	Self-generated energy	%	
Feed-food competition	Edible feed protein conversion rate (eFPCR)	Kg HDP in milk per kg HDP feed input	
	Land use ratio (LUR)	Kg HDP per ha produced per kg HDP in 1 kg product	
By-products	By-product in ration	%	
Animals' abilities	Dairy cow longevity	Age in years	

No.	КРІ	Reference values		Unit	Based on
		0 points	100 points		
1	Ratio protein from own land	37	76	%	ANCA (2018)
2	Organic matter balance	5	1	%	Van Eekeren et al. (2015)
3	Global warming potential	1453	898	CO2-eq in kg per kg milk	ANCA (2018)
4 a	Soil N-surplus	287	60	Kg N per ha	ANCA (2018)
4b	Farm N-surplus	26.7	6.6	Kg N per tons of milk	ANCA (2018)
5	Management packages landscape elements	5	1	%	Authors & OTWTPP
6	Self-generated energy	5	1	%	Authors
7	eFPCR	0.98	2.48	Kg HEP in milk per kg HEP feed input	Authors
8	LUR	1.46	0.81	Kg HDP per ha produced per kg HDP in 1 kg product	Authors
9	By-products in diet	5	1	%	Authors
10	Longevity	5	6	Age in years	Authors

A tool to assess circularity in dairy farms

- Quick tool as starting point for discussion
- Reference values need to be more context specific
- Water use is missing
- Farm level can be limiting (e.g. crop-livestock collaboration)

Discussion

- Need for dynamic models across scales
- Defining what is human edible / by-product
- Access to data on origin of feed ingredients

- Circularity mainly addresses planetary boundaries but also requires social foundation – essential rights for humans and animals (Raworth, 2017)
 - Rethinking value and prosperity

Discussion

Do the interlinkages between resource use and socioeconomic performance require more radical transformation of our food system?

Table I [Thicipies by which growth and post-growth metabolishis operate arranged by category							
	Economic principles	Social-ecological principles	Allocative principles	Institutional principles	Relational principles		
Growth metabolism	Efficiency	Extraction	Accumulation	Private ownership	Control		
Post-growth metabolism	Sufficiency	Regeneration	Distribution	Commons	Care		

Table 1 | Principles by which growth and post-growth metabolisms operate arranged by category

Check for updates

Sustainable agrifood systems for a postgrowth world

Steven R. McGreevy ^{1,2,3,0} ^{2,3}, Christoph D. D. Rupprecht^{4,30}, Daniel Niles^{3,30}, Arnim Wiek ^{5,30}, Michael Carolan⁶, Giorgos Kallis ^{7,8}, Kanang Kantamaturapoj ^{9,9}, Astrid Mangnus ^{10,0} Petr Jehlička ¹¹, Oliver Taherzadeh¹², Marlyne Sahakian¹³, Ilan Chabay ¹⁴, Ashley Colby ¹⁵, Jose-Luis Vivero-Pol ^{16,} Rajat Chaudhuri ^{17,1} Maximilian Spiegelberg², Mai Kobayashi¹⁸, Bálint Balázs ^{19,1}, Kazuaki Tsuchiya ²⁰, Clara Nicholls²¹, Keiko Tanaka²², Joost Vervoort¹⁰, Motoki Akitsu²³, Hein Mallee ²⁴, Kazuhiko Ota²⁵, Rika Shinkai³, Ashlesha Khadse²⁶, Norie Tamura²⁷, Ken-ichi Abe³, Miguel Altieri²⁸, Yo-Ichiro Sato²⁴ and Masashi Tachikawa²⁹

Thanks!

evelien.deolde@wur.nl

Special thanks to my co-authors from APS, Klaas Jan van Calker, Michel de Haan and the farmers involved.

