

74th EAAP ANNUAL MEETING, Lyon – France Session 80 - "Animal behaviour"

MP-SANBA (SANté et Bien-être des Animaux en élevage)

Impact of environmental enrichment on the behavior and immune cell transcriptome of pregnant sows

<u>M.M. LOPES¹</u>, C. CLOUARD¹, J. CHAMBEAUD¹, M. BRIEN¹, N. VILLAIN², C. GERARD², F. HÉRAULT¹, A. VINCENT¹, I. LOUVEAU¹, R. RESMOND³, H. JAMMES⁴ and E. MERLOT¹

¹PEGASE, INRAE, Institut Agro, Saint-Gilles, France; ²Chambre Régionale d'Agriculture Bretagne (CRAB), Rennes, France; ³IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu France; ⁴BREED, INRAE, Jouy-en-Josas, France

Introduction: welfare definition and challenges

Animal welfare definition

"The state resulting from the **positive mental** and physical state related to the satisfaction of its physiological and behavioral needs, as well as its expectations"

ANSES, 2018

Need for valid, reliable and feasible animal-based welfare biomarkers

Introduction: gene expression x social-environment

Adversity for extended periods leads to recurrent gene expression profile in immune cells = Conserved Transcriptional Response to Adversity (CTRA; Cole, 2019)

↑ Inflammation-related genes (ex: IL1B, IL6, IL8/CXCL8, COX2/PTGS2, and TNF)

↓ Antiviral responses/antibody production genes (ex: IFI-, MX-, and OAS- family genes)

Is it also possible to observe blood transcriptomic differences when comparing animals with contrasted welfare states?

Objective

Evaluate the variations in immune cells transcriptome of farm animals as a welfare indicator

Use of pregnant sows housed in contrasted welfare conditions and of different parities

Experimental design

■ Environmental enrichment with a known positive impact on the sows' welfare (*Merlot et al, 2022*)

Use of **behavioral** tools and physiological variables (**cortisol**) for confirmation

During successive gestations:

Conventional (C)

- Concrete floor
- \square 2.4 m²/sow

Enriched (E)

- Accumulated straw floor
- $3.5 \text{ m}^2/\text{sow}$

14 Conventional (7 x 2 repetitions)

14 Enriched (7 x 2 repetitions)

■ 28 animals selected (2nd gestations or more)

9 Dominant

11 Intermediary

8 Subordinate

14 Low Parity (LP; 2nd or 3rd gestation)
14 High Parity (HP; 4th or more gestations)

Methods: experimental timeline and measurements

Cortisol analysis

28 selected sows

Saliva: Acute stress (G35 and G98)

Hair: Chronic stress (G98)

Behavioral analysis

All sows, except those involved in their 1st gestation

Behavioral activity: Scan sampling with 10 min intervals (6h on G99, G101, G103)

Social interactions: Continuous sampling (3h on G99 to G103)

Dominance rank: ELO-rating method

RNA-seq analysis

28 selected sows

Blood sampling G98 (09:00 – 10:00) – Peripheral Blood Mononuclear Cells (PBMC)

Loss of 4 samples due contamination

Statistics

Fixed effects:

Housing x Parity

or

Housing x Dominance

Repetition (R1 or R2)

Methods: RNA-seq overview

cDNA library preparation, sequencing and mapping performed by the PGTB platform (Bordeaux)

- ☐ Sus scrofa reference genome GCF_000003025.6
- Differential analysis in R package DESeq2
 - ~ Housing + Parity + Repetition
 - ~ Housing + Dominance + Repetition
- Comparisons extracted with contrast function DESeq2
 - Housing = "enriched" vs "conventional"
 - Parity = "high parity" vs "low parity"
 - Dominance = "dominant" vs "subordinate"
- □ Pathway analysis in DAVID software (v2022q2) using Homo sapiens database as background (minimum 3 genes/term and FDR < 0,05)

Results: cortisol and behavioral analyses

Cortisol

□ ↓ cortisol concentration in E sows → in accordance
 with our previous studies (Merlot et al, 2019 and 2022)

Social interactions

- □ ↑ space + straw in E sows:
 - ➤ ↑ exploratory behavior
 - → reduce frustration
 - → ↓ aggression

Confirmation of the positive influence of the enriched system on sows' welfare

Results: housing influence on PBMC transcriptome

Enriched (E, n=10)

vs Conventional (C, n=14)

Results: parity influence on PBMC transcriptome

High parity (HP, n=11)

vs Low parity (LP, n=13)

Differential analysis

312 down-regulated and 225 up-regulated genes in HP (p-adj < 0.1 and FC ratio > 1.2 or <0.83)

↑ influence immune genes/pathways than housing

Pathway analysis: top 10 enriched biological terms

Results: social status influence on PBMC transcriptome

Dominant (Dom, n=6)

vs Subordinate (n=8)

Differential analysis

233 down-regulated and 216 up-regulated genes in HP (p-adj < 0.1 and FC ratio > 1.2 or <0.83)

↑ influence of social status; ≠ effect from parity

Parity x social status: 179 common genes

Pathway analysis: top 10 enriched biological terms

Conclusions and perspectives

- Long-term environmental enrichment with straw and bigger space has a positive influence on sows' well-being;
- The blood transcriptome is a poor indicator of the effects of housing enrichment;
- Ageing or reproductive cycles have a strong impact on blood transcriptome;
- Social status in the group also strongly influences immune cell functioning

- Detailed genes/pathways information for better understanding
- ☐ Methylome data (presented at session 10): data integration to elucidate the observed effects and determine the best welfare biomarkers!

BREED

Anne Aubert Angélique Favreau-Peigné Aurélie Chaulot-Talmon Christine Baly Hélène Jammes Hélène Kiefer Lorraine Bourgeois-Brunel Lotfi Bouzeraa **Valentin Costes**

CRAB

Aurore Connan **Bertrand Lebris** Camille Gérard Nicolas Villain Philippe Lirzin

GenPhySE

Julie Demars

PEGASE

Annie Vincent Caroline Clouard **Christian Diot Elodie Merlot** Françoise Thomas Frédéric Hérault Isabelle Louveau Jennifer Chambeau Laurence Le Normand Manon Brien Marie Couasnon Raphaël Comte Rémi Resmond

BioEpAR

Caroline Hervet Nicolas Bertho

IECM

Blandine Lieubeau

Funding

Région de Bretagne Metaprogramme SANBA

METAPROGRAMME

SANté et Bien-être des Animaux en élevage (MP-SANBA)

Thank you!