

IMAGE CLASSIFICATION TO ESTIMATE

FEED INTAKE BEHAVIOR IN WEANED

PIGLETS

Thomas Van De Putte

prof. Jeroen Degroote

prof. Joris Michiels

INTRODUCTION

Stress factors caused by weaning

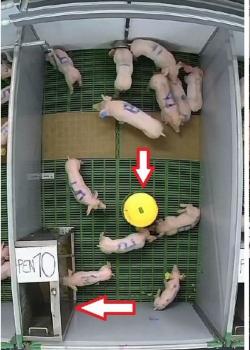
- Sudden change in environment
- Loss of maternal protection
- Sudden change in **diet**
 - Form: liquid solid
 - Composition and digestibility
 - Switch from milk protein plant products

Resulting in

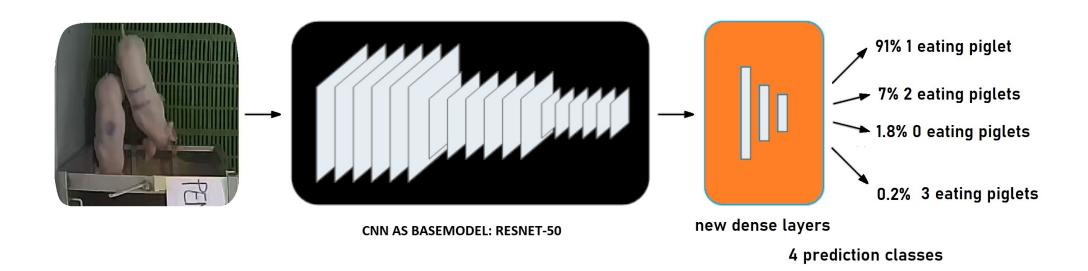
- Reduced feed intake
- Severe dysregulation of small intestine functionality
- Post-weaning diarrhea
- Increased vulnerability for infections
- Production losses
- Increased mortality

A STUDY ABOUT GROUP BEHAVIOUR AND THE ADAPTION TO NEW FEEDS

2x2 factorial design


- Factor 1 = Management strategy before weaning (HOUSING):
 - Litters kept under conventional (CON) conditions
 - **Group housing (GH)** (3 litters co-mingled, 10 days before weaning)
- Factor 2 = Feeding strategy at weaning (FEEDFAMILIARITY):
 - Creep feed + weaner diet (CREEP)
 - Weaner diet (WEAN)
- Data contains valuable variation in weaning stressors
- Video recorded 2 rounds x 12 pens x 12 piglets continuously for 3 days
- Is **computer vision** suitable to estimate feed intake and learn about animal behavior?
- Manually weighed daily feed intake

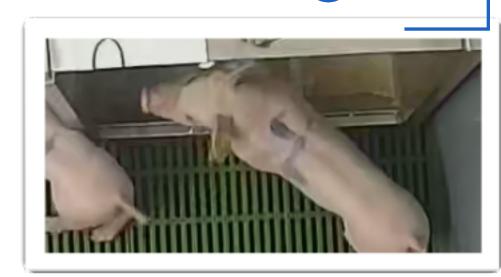
group housing (GH)



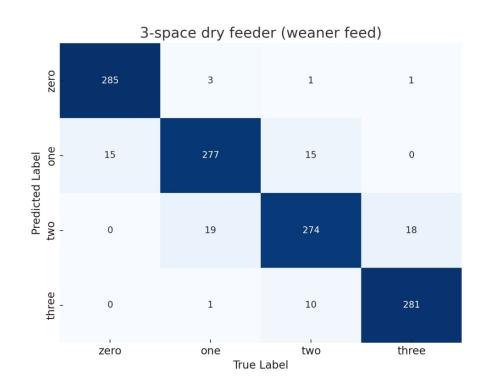
creep feed (CREEP)

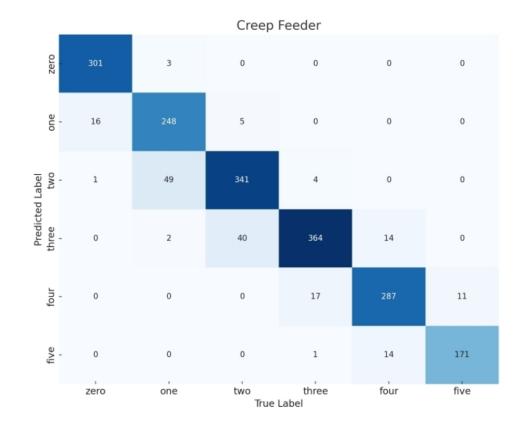
no creep feed (WEAN)

TRAINING A CONVOLUTIONAL NEURAL NETWORK ON SMALL SUBSET OF VIDEODATA



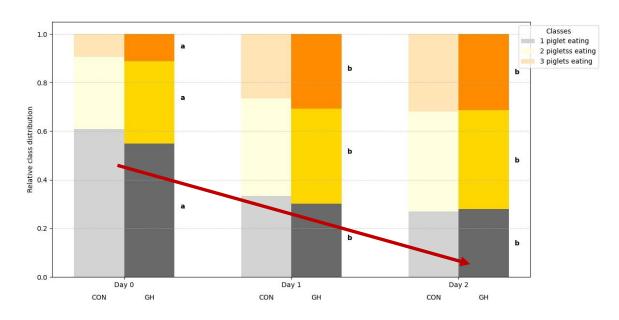
- The highest probability for each class was chosen
- 3-space dry feeder with weaner feed: '0', '1', '2', '3' eating animals
- 2 extra classes for creep feeder: '0', '1', '2', '3', '4', '5'

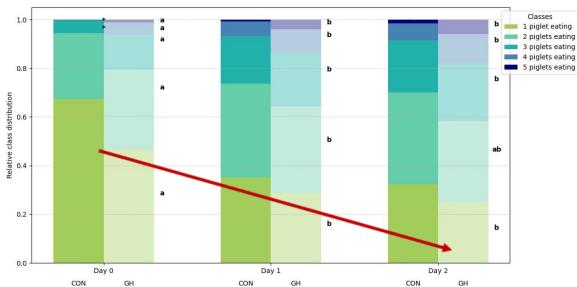

zero animals eating



4TH GENERATION MODELS TEST-SET-PERFORMANCE

GHENT


	3-space dry feeder (weaner feed)	creep feeder
average recall	93%	91%
average precision	93%	91%

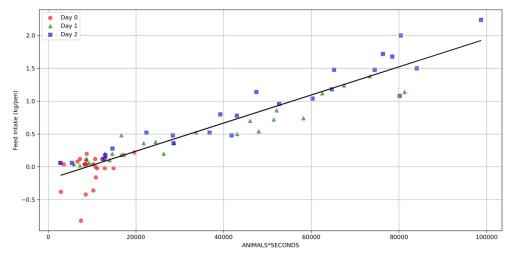

EATING BEHAVIOR ANALYSIS IN THE COMPLETE VIDEO DATASET

- 72h video data
- Analyzing 1 frame per second in each PEN
- An example for an imaginary period of 1 minute:
 - Class 1: 1 animal eating for 32 seconds = 1 x 32 = 32 animal*seconds
 - Class 2: 2 animals eating for 17 seconds = 2 x 17 = 34 animal*seconds
 - Class 3: 3 animals eating for 11 seconds = 3 x 11 = 33 animal*seconds
 - <u>Total:</u> 32 + 34 + 33 = 99 animal*seconds

PIGLETS DEVELOP GROUP FEEDING BEHAVIOR

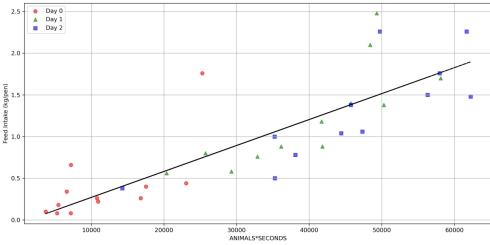
a,b: indicate the effect of day by class disregarding HOUSING (group housing (GH) – conventional (CON))

For piglets exclusively fed the weaner diet:


- Class 1 decreases while class 2 and 3 increase
- HOUSING did not affect the class distribution

For piglets fed creep feed:

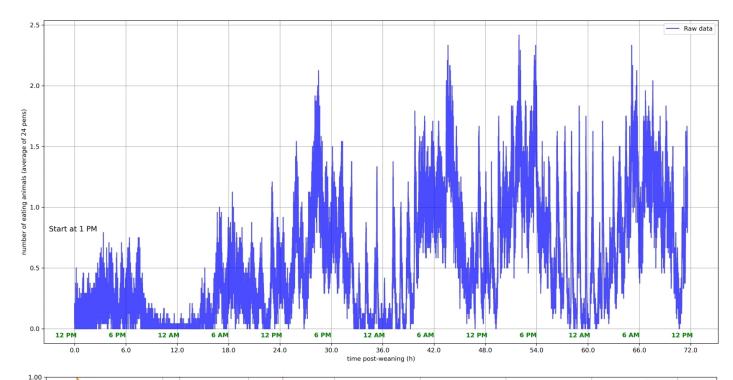
- Class 1 decreases while others increase
- GH increased class 4 and 5 eating events on d0


^{*:} indicates the effect of HOUSING within each class and each day.

EARLY FEED INTAKE BEHAVIOR RELATES TO FEED INTAKE

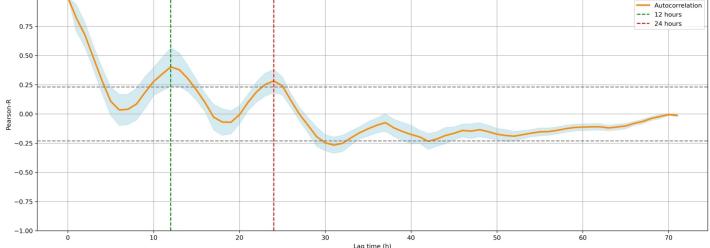
Intake of the weaner diet vs. time spent eating

- Feed intake (kg) = -0.19 + 0.00002141 * ANIMAL*SECONDS
- Adj. R-squared: 0.881


Intake of creep feed vs. time spent eating

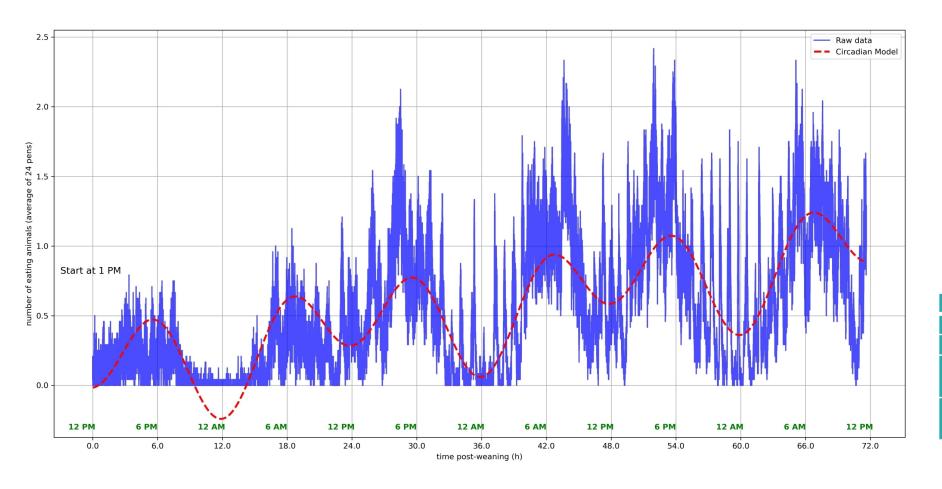
- Feed intake (kg) = -0.04 + 0.00003113 * ANIMAL*SECONDS
- Adj. R-squared: 0.702

Multiple linear regression using class info


- R² not improved as compared to simple linear regression
- Challenging to isolate the effect of each class due to multicollinearity

DAILY PATTERNS IN THE RAW DATA

Raw data:


- Average of 24 pens
- Shows a wavelike pattern
- Low feed intake behavior at 12h AM and 12h PM

Autocorrelation analysis:

- After smoothing the raw data
- 2 peaks visible at 24h and 12h

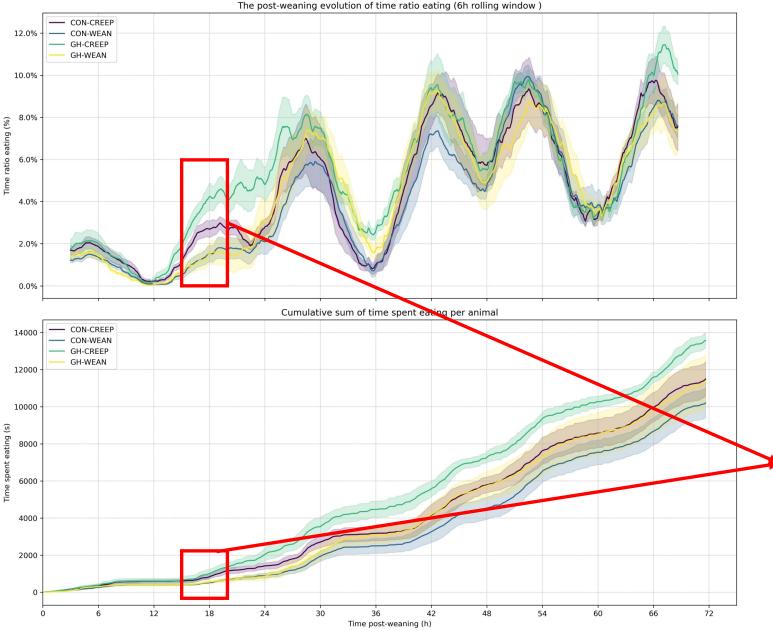
ONE-HARMONIC TRENDED CIRCADIAN MODEL

Model fit:

• $R^2 = 0.59$

Influence of light:

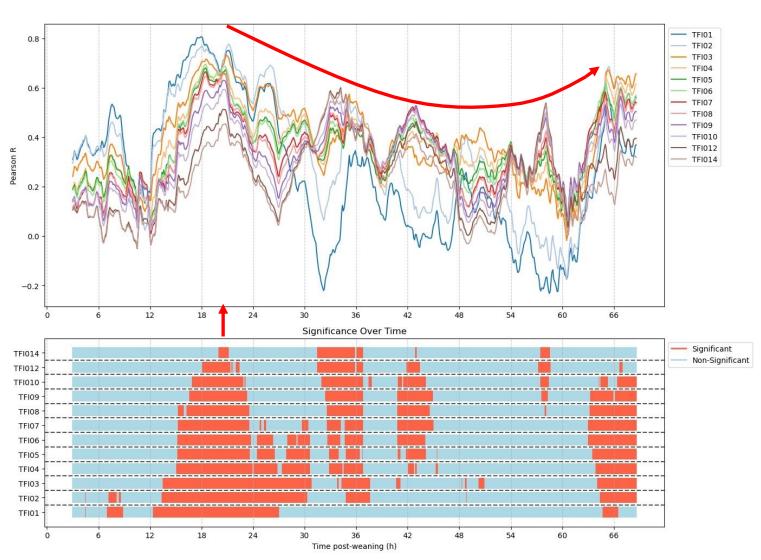
- Only limited daylight in the stable
- Artifical light 24/7


	value
Alpha	0.92511
Beta0 (linear trend coefficient)	0.01254
Beta1 (cosine coefficient for primary frequency)	0.18702
Beta2 (cosine coefficient for first harmonic)	-0.29605

$$Y(t) = \alpha + \beta_0 * t + \beta_1 * \cos(2\pi * f_{circadian} * t) + \beta_2 * \cos(4\pi * f_{circadian} * t)$$

where $f_{circadian} = 1/24$ is the frequency corresponding to the circadian rhythm

TEMPORAL DIFFERENCES IN INTAKE BEHAVIOR


- Differences in feed intake behavior start to develop during d0 (i.e. starting 12h post-weaning)
- Feeding creep feed increases feed intake behavior in that time window

Slope might be indicative for the behavior in a certain time window

EARLY FEED INTAKE BEHAVIOR ASSOCIATES WITH FEED INTAKE DURING THE WEANING TRANSITION

- Calculating the slope of the cummulative feed intake behavior in a running window of 6h
- Evaluate the correlation with the total feed intake (TFI) for a certain periods (e.g. TFI014 for d0 to d14 postweaning)
- The correlations during 16–24h postweaning suggest the relative importance of that period in 'predicting' the early post-weaning feed intake

EFFECT OF PRE-WEANING SOCIALISATION AND FEED FAMILIARITY

		HOUSING		FEEDFAMILIARITY			HOUSING	FEEDFAMILIARITY	INTERACTION HxF
	Dav	CON	GH	CREEP	WEAN	SEM	P-value	P-value	P-value
	d0	10	18	37×	O _A	8	0.544	0.002	0.182
TOTAL FEED INTAKE	d1	78ª	108 ^b	121×	66 ^y	9	0.048	0.001	0.725
(g/animal) (manually weighed)	d2	121	140	148×	113 ^y	9	0.212	0.033	0.763
	d0	1158	1452	1729×	881 ^y	144	0.202	0.001	0.163
TOTAL TIME SPENT	d1	4001ª	5057 ^b	4806	4251	255	0.038	0.256	0.692
(s/animal)	d2	5795	6009	6088	5717	258	0.697	0.501	0.574
	d0	7	0	21×	O _A	8	0.311	0.009	0.201
TOTAL FEED INTAKE RATE	d1	19	21	25	15	2	0.515	0.067	0.830
(mg/s)	d2	21	23	25	20	1	0.441	0.142	0.934
	d0	849	790	758	881	69	0.691	0.405	0.844
TIME SPENT at WEANERFEED	d1	2662	3064	1474×	4251 ^y	393	0.456	0.000	0.126
(s/animal)	d2	3982	4014	2279 ^x	5717 ^y	479	0.962	0.000	0.853
	d0	0	0	6	0	8	0.421	0.082	0.156
WEANERFEED INTAKE RATE	d1	14	13	12	15	1	0.640	0.285	0.363
(mg/s)	d2	17	19	17	20	1	0.378	0.275	0.848
	d0	618ª	1323 ^b	-	-	176	0.019	-	-
TIME SPENT at CREEPFEED	d1	2678ª	3986b	-	-	271	0.007	-	-
(s/animal)	d2	3627	3990	-	-	331	0.597	-	-
	d0	38	29	-	-	/	0.493	-	-
CREEPFEED INTAKE RATE	d1	28	31	-	-	3	0.590	-	-
(mg/s)	d2	26	28	-	-	2	0.694	-	-

CONCLUSIONS

- Image classification using computer vision showed good performance and proved useful in understanding eating behavior.
- Piglets develop group eating behavior upon weaning.
- A circadian feed intake pattern develops, following a one-harmonic trended model.
- Temporal changes in early feed intake behavior relate to intake on a 'longer term'.
- Pre-weaning socialization and feed familiarity affected feed intake and feed intake behavior:
 - Feeding additional creep feed increased total feed intake
 - Pre-weaning co-mingling stimulates creepfeed intake and stimulated creep feed intake behavior at d0 and
 d1 post-weaning.

Q & A

Thank you for your attention

Thomas Van De Putte

Phd Student

< LANUPRO/MONOGASTRIC>

E thomvdpu.vandeputte@ugent.be

T +32 9 264 90 08

M +32 486 93 64 36

www.ugent.be www.lanupro.ugent.be

- f Universiteit Gent
- @ugent
- @ugent
- in Ghent University

