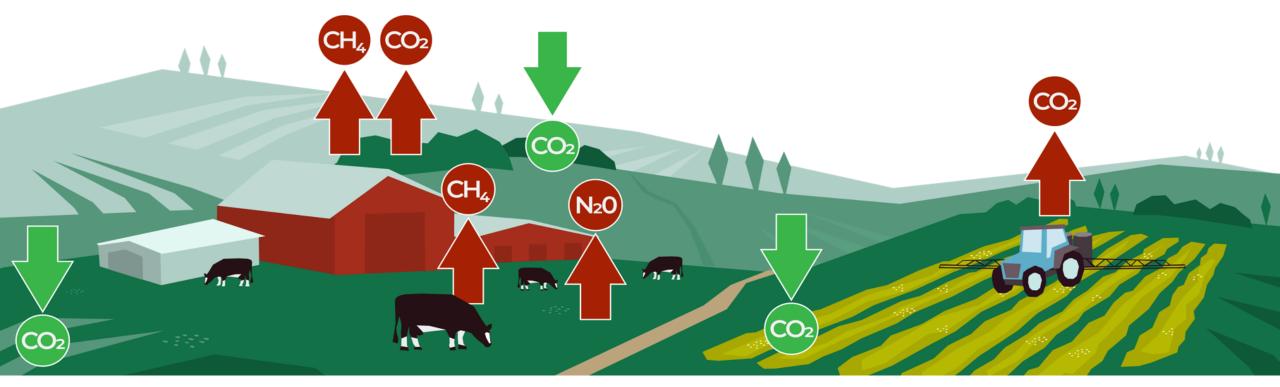
Carbon Sources & Sinks, Global Livestock Systems Measuring & Managing Livestock Farms Towards Net Zero

Prof. John Gilliland OBE

Professor of Practice, Queens University Belfast; Advisor, AHDB; Chair, ARC Zero Owner, Brook Hall Estate.

31st August 2023



Net Zero Definition: Sum of Emissions equals Sum of Sequestration

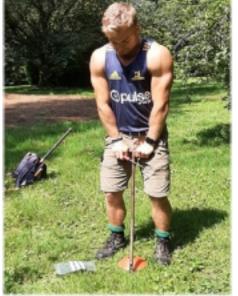
Adjusted for any fossil fuel CO2 emissions displaced by Renewables & for any methane emissions reduced by waste management

It is not about Zero Emissions.....

So How Do We Move Livestock Production Towards Net Zero?

- Measure & Manage..... Using Life Cycle Assessment Calculators (LCA)
- LCA "Factors," Emissions now to TIER 2 (An International Average) Sequestration only at TIER 1 (A National Average)
- Ideally, we need both to be at TIER 3 (Actual on farm data)

But.....



So How Do We Move Livestock Production Towards Net Zero?

- Measure & Manage..... Using Life Cycle Assessment Calculators (LCA)
- LCA "Factors," Emissions now to TIER 2 (An International Average) Sequestration only at TIER 1 (A National Average)
- Ideally, we need both to be at TIER 3 (Actual on farm data)
- But..... The challenge of selecting an appropriate soil organic carbon simulation model: A comprehensive global review and validation assessment

Agata Garsia Antoine Moinet	📔 Carmen Vazquez 💿	Rachel E. Creamer
Gabriel Y. K. Moinet 💿		WUR, June 2023

Delivering at the Farm Level

An EIP Operational Group - Accelerating Seven N. Irish Farms towards Net Zero

والمحية المعتي والمحتور أمامته المتتح والمحتي والمع

Roger & Hilary Bell Sheep Simon Best Arable & Beef Patrick Casement Sheep & Sucklers John Egerton Suckler Beef John Gilliland Willow & Dry Stock Hugh Harbison Dairy Ian McClelland Dairy

Agriculture, Environment and Rural Affairs www.daera-ni.gov.uk

Where did we start..... We Learnt our Numbers.....

Baselined & Benchmarked.....

Where did we start..... We Learnt our Numbers.....

Baselined & Benchmarked.....

- GHG Emissions
- Carbon Sequestration
- Carbon Stocks in Soil
- Carbon Stocks in Trees
- Net Carbon Position
- Behavioural Change
- Delivering other Public Goods

Gross Emissions for the seven ARC Zero farms agrecalc Using **TIER 2 Emissions Module** Gross Emissions 2021 Agrecalc Analysis Enterprises t CO2-e/yr Ian McClelland 1,101 Dairy Dairy 2,009 **Hugh Harbinson** John Egerton Beef & Sheep 1,475 **Roger & Hilary Bell** Sheep with Beef 754 Simon Best Arable with Beef 1,799 Beef & Sheep Patrick Casement & Trevor Butler 492 Willows with Dry Cows John Gilliland 151

ومراجعها بمعيان مغرام متعاصل المتعادي

Gross Emissions Variability within UK Livestock Systems Recognising & Tackling a Huge Problem.....

		Minimum Footprint	Average Footprint	Maximum Footprint
1st Case Study - Milk Production	Nos. of Farms	kg CO2e/ kg FPC Milk	kg CO2e/kg FPC Milk	kg CO2e/kg FPC Milk
Cross Section of Dairy Systems	720	0.69	1.31	5.71

		Minimum Footprint	Average Footprint	Maximum Footprint
2nd Case Study - Beef Production	Nos. of Farms	kg CO2e/kg dwt	kg CO2e/kg dwt	kg CO2e/kg dwt
Spring Calving, Lowland Suckler	1,044	7.56	37.77	395.18

Source: Agrecalc.com; Period: 2018 -2022; August 2023

Gross Sequestration for the seven ARC Zero farms Using Control TIER 1 Sequestration Module

2021 Agrecalc Analysis	Enterprises	Gross Sequestration t CO2-e/yr
Ian McClelland	Dairy	309
Hugh Harbinson	Dairy	549
John Egerton	Beef & Sheep	444
Roger & Hilary Bell	Sheep with Beef	456
Simon Best	Arable with Beef	738
Patrick Casement & Trevor Butler	Beef & Sheep	548
John Gilliland	Willows with Dry Cov	vs 156

Net Carbon as a Percentage of Gross Emissions Using Control TIER 1 Sequestration Module

2021 Agrecalc Analysis	Enterprises	Gross Emissions t CO2-e/yr	Gross Sequestration t CO2-e/yr	Net Emissions t CO2-e/yr	% Reduction
Ian McClelland	Dairy	1,101	309	792	28%
Hugh Harbinson	Dairy	2,009	549	1,459	27%
John Egerton	Beef & Sheep	1,475	444	1,031	30%
Roger & Hilary Bell	Sheep with Beef	754	456	298	60%
Simon Best	Arable with Beef	1,799	738	1,061	41%
Patrick Casement & Trevor Butler	Beef & Sheep	492	548	-56	111%
John Gilliland	Willows with Dry Cows	151	156	-4	103%

agrecalc

No two farms are the same..... Some farms will find the journey easier than others.....

Net Carbon as a Percentage of Gross Emissions Using Control TIER 1 Sequestration Module

2021 Agrecalc Analysis	Enterprises	Gross Emissions t CO2-e/yr	Gross Sequestration t CO2-e/yr	Net Emissions t CO2-e/yr	% Reduction
Ian McClelland	Dairy	1,101	309	792	28%
Hugh Harbinson	Dairy	2,009	549	1,459	27%
John Egerton	Beef & Sheep	1,475	444	1,031	30%
Roger & Hilary Bell	Sheep with Beef	754	456	298	60%
Simon Best	Arable with Beef	1,799	738	1,061	41%
Patrick Casement & Trevor Butler	Beef & Sheep	492	548	-56	111%
John Gilliland	Willows with Dry Cows	151	156	-4	103%

agreg

No two farms are the same.....

Some farms will find the journey easier than others..... Some farms are beyond Net Zero already.....

Carbon Sequestration – New Measuring Technologies When repeated every 5 yrs. measures actual change, essential for TIER 3

Aerial LiDAR Survey at 40 scans per metre



Soil Sampling to one metre deep

Measuring Carbon in Trees & Hedges Using Aerial LiDAR at Brook Hall

Measuring Carbon in Trees & Hedges Using Aerial LiDAR at Brook Hall

A. Higgins 2021 afbi AGRI-FOOD & BIOSCIENCES

		Brook I	Hall Estate	Totals			
Vegetation type	Hedge Length (km)	AGB (t)	C (t)	BGB* (t)	C (t)	Total C (t)	AGB
Hedge 0-4m	0.78	14.92	7.1	2.86	1.3	8.5	
Hedge 4-7m	0.35	6.36	3.0	1.22	0.6	3.6	Above Ground
Hedge 7-10m	0.25	10.32	4.9	1.98	0.9	5.9	Biomass
Hedge >10m	1.00	156.17	74.5	29.99	14.1	88.6	
Total Hedges	2.38	187.77	89.5	36.05	16.94	106.49	BGB
	Canopy Area (ha)						Below Ground
Single Trees	1.87	494.78	236.0	95.00	44.6	280.6	Biomass
Deciduous Woodland	17	1352.74	645.1	259.73	122.1	767.2	
Coniferous Woodland	0.09	6.17	2.9	1.27	0.6	3.5	
Biomass	28.96	337.61	161.0	64.82	30.5	191.5	
Total	47.92	2,379.07	1,134.6	456.8	214.7	1,349.3	

Measuring Carbon in the Soil Stratified for different Land Uses & Land Managements at Brook Hall

Land Category	Total ha	Soil pH	Av. LOI/SOM	No. of Soil Cores	No. of Samples	Av. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category
<10% Soil Org. Matter, Short Rotation Willow Coppice	34.2ha	pH 6.2	7.60%	55	11	4.20%	3.20%	87.1t	2,978.8t
<10% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	1.4ha	pH 6.3	9.30%	15	3	4.90%	3.10%	87.3t	122.2t
<10% Soil Org. Matter, Decideous Woodland	0.5ha	pH 5.3	9.10%	15	3	5.80%	4.10%	114.7t	57.4t
10-20% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	12.9ha	pH 6.1	13.70%	30	6	5.50%	3.40%	93.7t	1,208.7t
10-20% Soil Org. Matter, Silvopasture, no slurry/FYM	4ha	pH 4.8	14.80%	25	5	5%	2.80%	81.6t	326.4t
10-20% Soil Org. Matter, Decideous Woodland	4.6ha	pH 5.3	13%	25	5	6.90%	4.90%	136t	625.6t
Totals	57.6ha			165 Soil Cores	33 C. Samples			92.3t/ha	5,319.1t of C.

Soil Carbon at Brook Hall = 5,319 t of C, or 19,468 of CO2e

Total Carbon Stocks across ARC Zero farms.....

Total ARC Zero CO2e Stocks	Soil Carbon	Tree Carbon	Total Carbon	% C in Soil
Ian McClelland	31,813t	1,310t	33,123t	96%
Hugh Harbison	68,054t	1,969t	70,023t	97%
John Egerton	31,813t	1,310t	33,123t	96%
Roger & Hilary Bell	50,819t	688t	51,507t	98%
Simon Best	237,915t	6,493t	244,407t	97%
Patrick Casement & Trevor Butler	54,556t	4,022t	58,578t	93%
John Gilliland	19,468t	4,937t	24,405t	80%
		Total	515,166t	>

ARC Zero farms manage 515,166t of CO2e, 97% is within the Soil In 2027, Perhaps 540,000t? Who will reward the additional carbon stored?

Empowered, ARC Zero Farmers made the following Changes For both Mitigation & Building Carbon Stocks...

- Improving efficiency genetics, age of slaughter, cow size, animal health
- Improving Soil pH improving nutrient uptake & growth of clover
- Increasing the use of Legumes & Multi Species Pastures
- Reducing the use of Nitrogen fertiliser
- Planting trees & Hedgerow Management
- Grazing Willows
- Installing Renewables......

The Resultant Improvements Observed over two years..... Conparison between 2021 & 2023, gross emission/unit of output

GHG Reduction 2021 to 2023	Enterprises	2021	2023	% Reduction in GHGs
Ian McClelland	Dairy	1.3kg CO2e/kg FPC Milk	1.1kg CO2e/kg FPC Milk	13%
Hugh Harbison	Dairy	1.25kg CO2e/kg FPC Milk	1.2kg CO2e/kg FPC Milk	4%
John Egerton	Beef & Sheep	32.8kg CO2e/kg dwt	25.6kg CO2e/kg dwt	22%
Roger & Hilary Bell	Lamb	22kg CO2e/kg dwt	15.7kg CO2e/kg dwt	28%
Simon Best	Wheat	0.99kg CO2e/kg grain	0.47kg CO2e/kg grain	53%

Determining Factors – Price of Fertiliser

- Timing of sowing legumes

agrecalc

- Livestock ill health

Reporting Methane using GWP*, as well as GWP100 Methodology

IOP Publishing

Environ. Res. Lett. 18 (2023) 084014

https://doi.org/10.1088/1748-9326/ace204

ENVIRONMENTAL RESEARCH LETTERS

LETTER

OPEN ACCESS

Are single global warming potential impact assessments adequate for carbon footprints of agri-food systems?

RECEIVED

5 October 2022

REVISED 9 May 2023

ACCEPTED FOR PUBLICATION 27 June 2023

PUBLISHED 18 July 2023

Original content from this work may be used under the terms of the Graham A McAuliffe^{1,*}, John Lynch², Michelle Cain³, Sarah Buckingham⁴, Robert M Rees⁴, Adrian L Collins¹, Myles Allen⁵, Raymond Pierrehumbert⁵, Michael R F Lee⁶ and Taro Takahashi^{1,7,8}

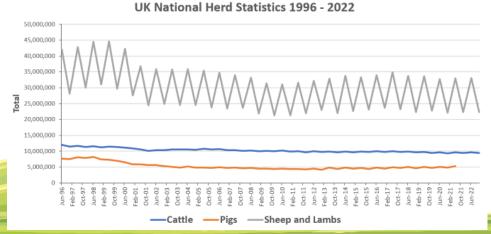
Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, United Kingdom Nature-based Solutions Initiative, Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom

- ³ Cranfield University, Cranfield Environment Centre, Bedfordshire MK43 0AL, United Kingdom
- ⁴ Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- ⁵ Department of Physics, University of Oxford, Oxford OX1 3PJ, United Kingdom
- ⁶ Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom

and the second secon

- ⁷ University of Bristol, Bristol Veterinary School, Langford, Somerset BS40 5DU, United Kingdom
- ⁸ Agri-Food and Biosciences Institute, AFBI, Large Park, Hillsborough, Belfast, Northern Ireland BT26 6DR, United Kingdom

Reporting Methane using GWP*, as well as GWP100 Methodology

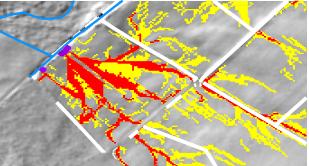

Entorprisos	GWP100	GWP*
Enterprises	% Reduction	% Reduction
Dairy	28%	47%
Dairy	27%	51%
Beef & Sheep	30%	63%
Sheep with Beet	60%	126%
Arable with Beef	41%	50%
Beef & Sheep	111%	325%
Willows with Dry Cow	s 103%	251%
	Dairy Beef & Sheep Sheep with Beef Arable with Beef Beef & Sheep	Enterprises% ReductionDairy28%Dairy27%Beef & Sheep30%Sheep with Beef60%Arable with Beef41%Beef & Sheep111%

 \mathbb{C}

agrecalc

Assumptions:

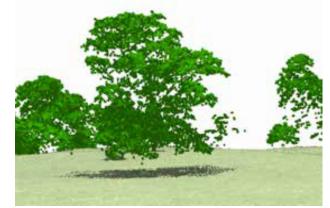
- Livestock Nos. Mirrored UK National Herd Trend over last 20 yrs
- IPCC AR4 CO2e & GWP* conversion values
- GWP* calculation is equation 3, Lynch et al. 2020



Delivering Multiple Public Goods - Not Single Agendas

Producing Nutritious Food & Tackling Malnutrition

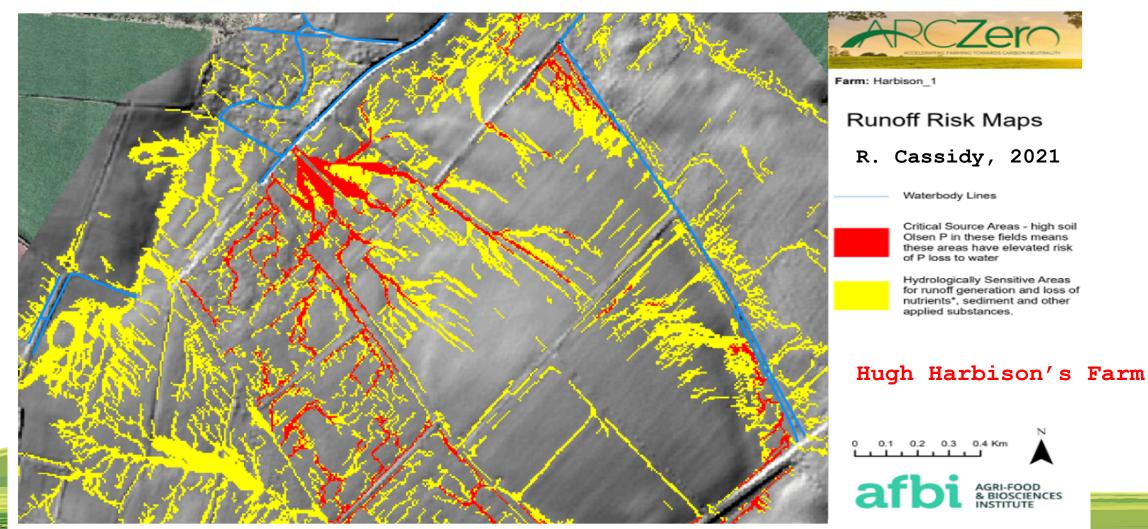
Improving Water Quality by Reducing Over Land Flow



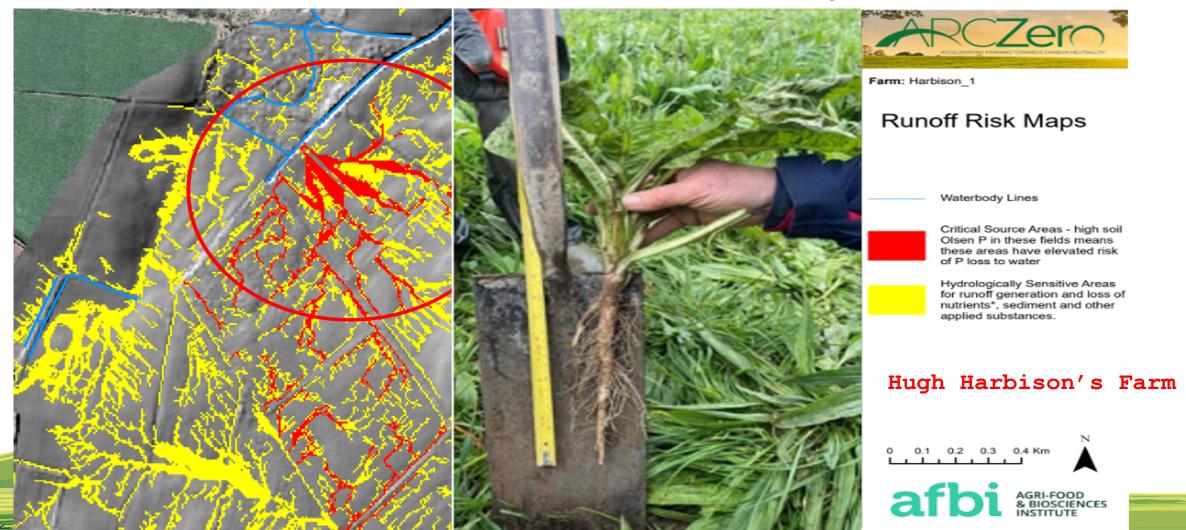
Delivering Soil Improvement Both Fertility & Health

Optimising Biodiversity, Especially Below Ground

المرتجع أرجعني أرجعني أرجعت فالتركي المراجع


Accelerating Carbon Sequestration, Both Above & Below Ground

Generating Profits



Delivering Multiple Public Goods Simultaneously Using LiDAR & Phosphate Soil Surveys to create "Run Off Risk" Maps

Delivering Multiple Public Goods Simultaneously Multi Species Pastures – Water Infiltration, Biodiversity, Carbon Sequestration

Willow SRC (28 Yrs. Old)

D. Woodland (30 Yrs. Old)

COMPARING DIFFERENT LAND USES

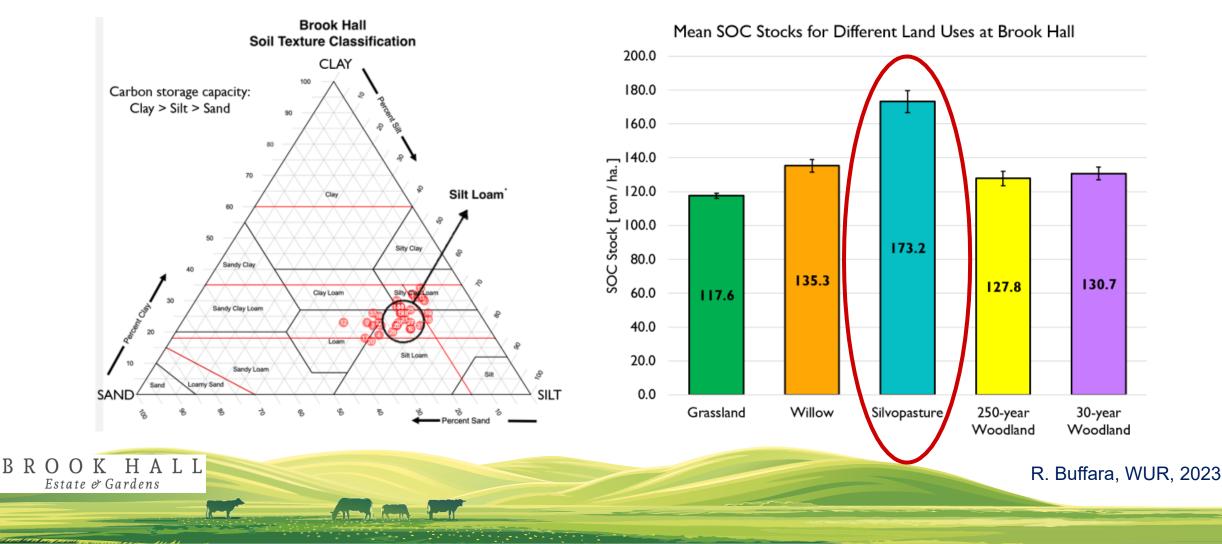
Permanent Pastureland (200 Yrs. Old)

B R O O K H A L L Estate & Gardens

R. Buffara, WUR, 2023

Silvopasture (120 Yrs. Old)

D. Woodland (250 Yrs. Old)


Delivering Multiple Public Goods Simultaneously Increasing Biodiversity Under the Soil.... Role of Livestock Faeces....

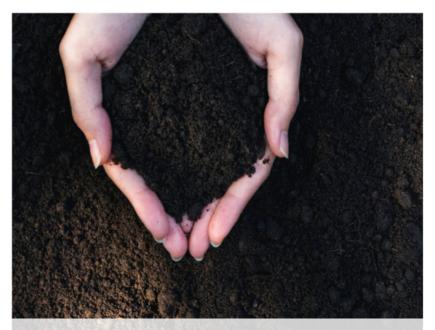
والمحالية والمحالية

Role of different Land Uses in building Soil Organic Carbon Diversity of root architecture is best.... Monocultures are not the right answer....



- ARC Zero registers as a Community
 Interest Company
- Co-op Foundation awards £97,000 to ARC Zero to reducing Soya Bean & Artificial Nitrogen Fertiliser

Is ARC Zero Ambition Possible at a Regional Level.....



- £45m N. Ireland Scheme to base line every field, tree & hedge
- Carried out over four years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run off Risk Maps
- Opened May 2022, plan to repeat every five years
- 92% Farmer uptake in Zone One (25% of N. Ireland)
- <u>Soil Nutrient Health Scheme | Agri-Food and Biosciences</u>
 <u>Institute (afbini.gov.uk)</u>

Is ARC Zero Ambition Possible at a Regional Level.....

- £45m N. Ireland Scheme to base line every field, tree & hedge
- Carried out over four years, one Zone per year
- Online training, empowering farmers with their own Data
- Output Soil Fertility, Carbon Stocks & Run off Risk Maps
- Opened May 2022, plan to repeat every five years
- 92% Farmer uptake in Zone One (25% of N. Ireland)
- Soil Nutrient Health Scheme | Agri-Food and Biosciences Institute (afbini.gov.uk)

Essential..... Government Recognition..... Measuring, Reporting & Verification is a Public Good

Delivering At a National Scale.... Australian Carbon Credit Units (ACCU)

Premium Australian Carbon Credits

DELIVERED BY REXTON, GOONDIWINDI QLD, AUSTRALIA

SOC measured to 1 metre, 7 years apart 53kg CO2e sequestered /kg of live weight grazed Sold at a Premium for AUS\$93/t

Carbon Sources & Sinks, Global Livestock Systems Measuring & Managing Livestock Farms Towards Net Zero

Innovation, Precision Measurement, Management, Education & Empowerment Key to Positive Behavioural Change & the Securing of the Future of Global Livestock Systems

john.gilliland@brookhall.org

