Agronomic and environmental impacts of sheep integration in cover crop management in Wallonia

N. LORANT⁽¹⁾, B. HUYGHEBAERT⁽¹⁾, D. STILMANT⁽¹⁾

⁽¹⁾ Walloon Agricultural Research Centre, Gembloux, Belgium

Société de Gestio

Société Publique de Gestion de l'Eau

Sheep sector in Wallonia – Key figures

A win-win partnership ? What we know

Le PROGRAMME de GESTION DURABLE de l' AZOTE en agriculture (PGDA III)

For the farmer

Trampling and compaction

After a light tillage for sowing Soil structure (water penetration, aggregates) Nutrients exportation by sheep 4% of nitrogen, 8% of phosphorus et 0.3% du potassium Grazing date has a greater impact than cover crop management on leached nitrogen Diversify the flora of its cover crop for grazing by sheep Low impacts on pests, slugs, weeds and the following crop For the breeder Interesting feed value 0.90 UFL/kg MS and 90g PDI/kg MS

Risk of light lameness if soil is humid with an increase in 1 to 4% of animals

Parasitic health of cover crop for sheep

Crop yield

Grazing and grazing intensity do not negatively influence the yield of the following sring crop

		Non- grazing	Partial grazing	Total grazing	P-value
eld	Beet (3 trials, n=3/grazing intensity)	100.4	97.8	102.8	0.29
resh yi ha)	Chicory (1 trial, n=3/grazing intensity)	Ory 66.5 73.9 68.5	68.5	0.16	
erage f (t/l	Potato (1 trial, n=3/grazing intensity)	55.3	51.1	54.0	0.26
Ave	Pea (1 trial, n=3/grazing intensity)	3.1	2.1	2.8	0.65
rage yield ha)	Maize (1 trial, n=3/grazing intensity)	19.9	18.6	19.2	0.61
Avel dry) (t/l	Bean (1 trial, n=3/grazing intensity)	1.5	1.4	1.4	0.87

roject

Mineral nitrogen

Evolution of total mineral nitrogen content (N-NO₃ et N-NH₄) according to sampling period and intensity of grazing

PG

6

Cover crop sowing Post-grazing Mid-January Winter outing Equitation (1997) 0-30 cm Great variability in nitrogen residues kent [kg 50 00 No significant difference 40 30-60 between plots of the same trial B according to the grazing intensity 60-90 â Partial grazing artial grazing Partial grazing Partial grazing Total grazing Total grazing Total grazing Total grazing Non-grazing Non-grazing Non-grazing Non-grazing Each point represent a trial site

project

Mineral nitrogen – after grazing

Analysis of the quantity of mineral nitrogen present in the 0-30 cm and 0-90 cm depth after grazing, according to trial site and grazing intensity

	Depth	Grazing intensity	P-value	-grazing al grazing
	0-30 cm	Non-grazing vs Partial grazing	* 0.019	
		Non-grazing vs Total grazing	*** 0.00054	+11kg N/Ha
		Partial grazing vs Total grazing	NS	
		Trial site effect	***	
	0-90 cm	Non-grazing vs Partial grazing	NS	
		Non-grazing vs Total grazing	* 0.011	+13kg N/ha
		Partial grazing vs Total grazing	NS	A start of all
		Trial site effect	***	

Statistical method significance of the variance comparison test

project

Cover crop sowing

, m

Post-grazing

▙▐₽₽

╺╆╺╆╺╪

Mid-January

grazing

azing

grazing

Winter outing

Б

Mineral nitrogen – winter outing

Analysis of the quantity of mineral nitrogen present in the 0-30 cm, 30-60 cm and 60-90 cm depth at winter outing, depending on the trial site and grazing intensity and significance of the variance comparison test.

	Depth	Grazing intensity	P-value	
Anal	lysis of the qua	ant Noof-grazingins corpial grazing	0-90 On Ocep	th
at	winter outing	deneodingrazithe triattoteaneratazies i	hten sitg and	
	U-30 Gign	Partial grazing vs Total grazing	NS	
	Depth	Grazing intensity	P-value	
A.		Non-grazing <i>vs</i> Partial grazing	NS	
	0.00	Non-grazing vs Total grazing	NS	
	0-90 cm	Partial grazing <i>vs</i> Total grazing	NS	
		Trial site effect	* * *	
		Non-grazing <i>vs</i> Partial grazing	NS	0
	60.00 cm	Non-grazing vs Total grazing	* 0.028	
	60-90 Cm	Partial grazing <i>vs</i> Total grazing	NS	
		Trial site effect	***	

projec

Life cycle analysis

	System A	System B	System C	System D	System E
In sheepfold system	100	50	150	100	100
Cover crop grazing	0	50	0	50	100
Total of sheep kept	100	100	150	150	200

Distribution of the number of sheep kept between

different farming systems

These different systems are proposed with a view to increasing the size of the exploitation without constructing a new building in the case of systems D and E

Impacts on global warming (kg CO₂eq.) per kg of meat produced

projec

ervi

Economic performances

I project

Partner	Agricultural practices	Global result	Interpretation	
	Mechanical destruction			
	Vs	-384 €	Gain	
Farmor	Destruction by sheep			
Faimei	Chemical destruction			
	Vs	73€	Extra cost	
	Destruction by sheep			
	System A			
	Vs	-5.154€	Gain	
	System B			
	System A			
	Vs	-2.147 €	Gain	
Broadar	System C			
breeder	System A			
	Vs	-8.225 €	Gain	
	System D			
	System A			
	Vs	-18.983€	Gain	
	System E			

Economical global result according to the farming system in place and type of cover crop destruction

Conclusion

Grazing of cover crops by sheep have no significant effect on nitrogen leaching. The nitrogen leaching is more influence by agricultural practices

Yield of the following spring crops is not impacted

Cover crops offer a high quality diet for sheep

The economic and environmental impacts of the practice is attractive for both the farmer and the breeder

Opportunity to develop the sheep sector

Partnership

UCLouvain

COLLEGE des **PRODUCTEURS**

Société Publique de Gestion de l'Eau

Contact : n.lorant@cra.wallonie.be

project

J

