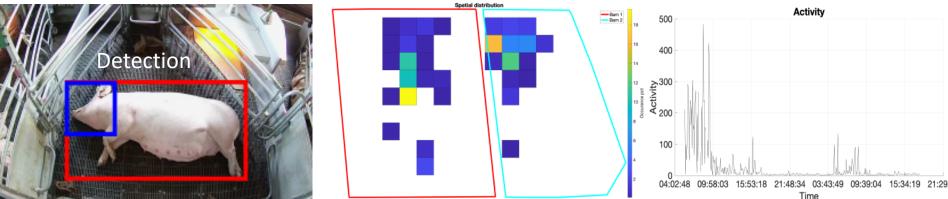
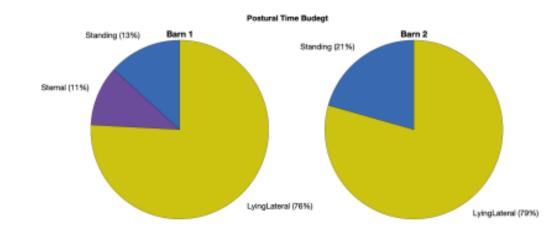
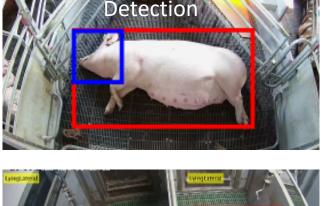
## INRAØ


## Estimating sow posture from computer vision: influence of the sampling rate M. Bonneau<sup>1</sup>, J.A. Vayssade<sup>1</sup>, L. Canario<sup>2</sup>


<sup>1</sup>UR0143 ASSET, INRAE, 97170, Petit-Bourg, Guadeloupe, France.


<sup>2</sup> UMR1388 GenPhySE, INRAE, Université de Toulouse, INPT, 31326, Castanet, Tolosan, France.



- Monitoring behavior becomes an important question for managing and studying health and welfare.
- Computer vision offers valuable solutions:
  - No need to handle animal
  - No battery problem









#### INRA

## Monitoring Postural Time Budget

- Postural Time Budget (PTB):
  - Percentage of Time Budget spend in given postures.
- Interesting for comparing behavior between individuals
  - Comparison during stress (e.g. nutritional or temperature).
- Monitoring over the long term implies several constraints:
  - Large amount of data to store.
  - Computation time.
- Need to control the amount of data recorded:
  - Which monitoring frequency for a good estimation of the PTB?



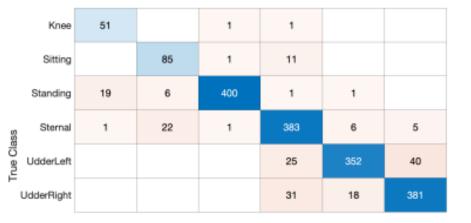


- Sows kept in crate.
- Recorded using CCTV cameras.
- Initial frame rate is 10 image/s (10 fps).
- Convolutional Neural Network for posture estimation (trained of thousands of images).

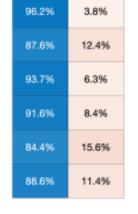


| Animal id        | Record day (duration)       |
|------------------|-----------------------------|
| 1                | 1 (14h)                     |
| 2                | 1 (14h)                     |
| 3                | 1 (14h)                     |
| 4                | 1 (14h), 10 (24h), 20 (24h) |
| 3<br>4<br>5<br>6 | 1 (14h)                     |
| 6                | 1 (8h), 21 (14h)            |
| 7                | 1 (14h)                     |
| 8                | 10 (24h), 20 (24h)          |
| 9                | 1 (14h), 10 (24h), 20 (24h) |
| 10               | 1 (14h)                     |
| 11               | 1 (14h)                     |
| 12               | 1 (14h)                     |
| 13               | 1 (14h), 10 (24h), 20 (24h) |
| 14               | 1 (14h), 10 (24h), 20 (24h) |
| 15               | 1 (9h)                      |

• 15 individuals recorded on different day after farrowing.







• 8 postures considered:

Knee, Sitting, Standing, Sternal, UdderLeft and UdderRight.

- 16,245 pictures for training and 3,573 for validation.
- 1,842 pictures for testing.
- Use EfficientNet.



| 71.8% | 75.2%   | 99.3%    | 84.7%          | 93.4%                     | 89.4%      |
|-------|---------|----------|----------------|---------------------------|------------|
| 28.2% | 24.8%   | 0.7%     | 15.3%          | 6.6%                      | 10.6%      |
| Knee  | Sitting | Standing | Sternal<br>Pre | UdderLeft<br>dicted Class | UdderRight |



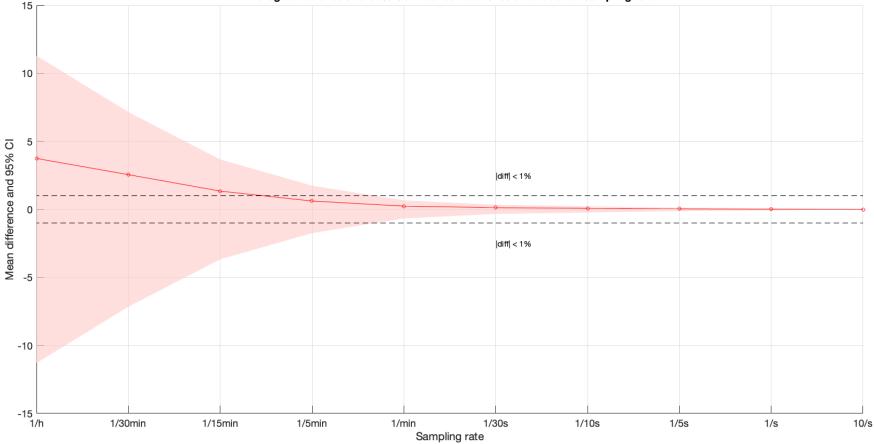
#### Average Precision: 90.36%

#### Average Sensitivity: 85.64%

#### INRA



- 1. Posture estimation ran using the original 10 fps (10/s).
- 2. Down sampling at: 1/s, 1/5s, 1/10s, 1/30s, 1/min, 1/5min, 1/h.
- 3. Estimation of the PTB for each sampling rate.
- 4. Comparison of the PTB for each sampling rate:

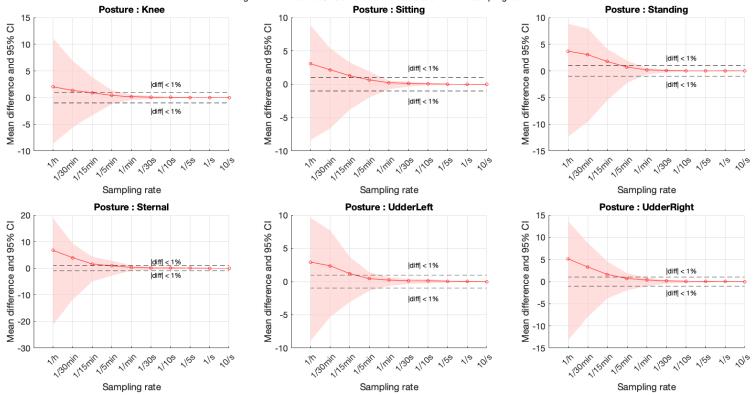

Error =  $\frac{1}{6} \sum_{p \in P} (x^p - x^p)$ , P = {Knee, Sitting, Standing, Sternal, UdderLeft and UdderRight}

 $x^p$  is the estimated percentage of time spend in posture p.

 $x^p$  is the « true » estimated percentage of time spend in posture p (using 10 fps data).

5. Analysis of variance to test the influence of the animal id, recording day and sampling rate on the PTB.






Average difference and 95% Confidence interval as a function of sampling rate

 A sampling rate of 1/min is, in average, sufficient to have a difference <1% with the original PTB, with 95% confidence.

#### INRAe





Average difference and 95% Confidence interval as a function of sampling rate

For Sternal and UdderRight, a sampling rate of 1/30s is, in average, sufficient to have a difference <1% with the original PTB, with 95% confidence.</li>

#### INRAe



- Use monitoring of 15 sows during 430 hours on different days after farrowing.
- Compare the estimation of the postural time budget for a sampling rate of 1/s, 1/5s, 1/10s, 1/30s, 1/min, 1/5min, 1/h with the original 10/s sampling rate.
- The error depends on the posture.
- A sampling rate of 1/30s is sufficient to have < 1% error, with <5% risk.
- Difficult to know if the results could be generalize to other species/conditions.
- Important question when monitoring over the long term
  - Cost of storage.
  - Time for analysis and video transfert

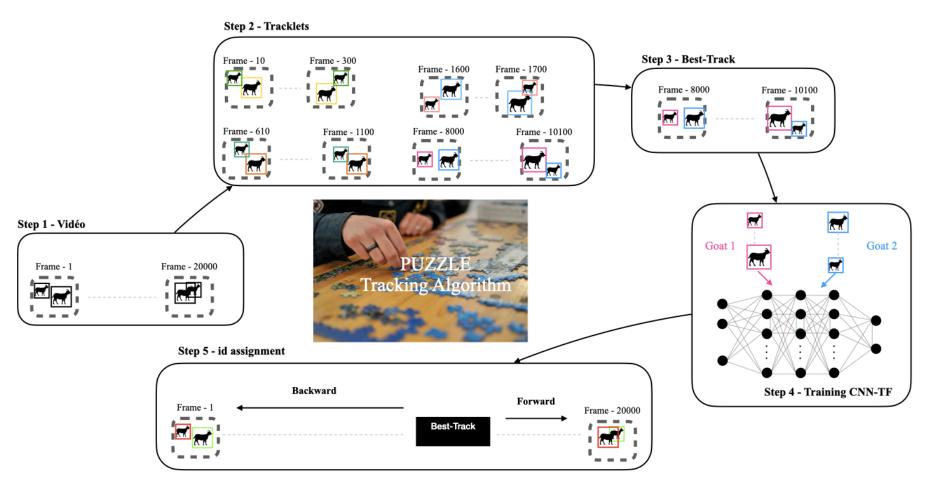


## > Tracking and behavior monitoring



https://gitlab.com/inra-urz/puzzle-livestock-tracking






Estimating sow posture from computer vision: influence of the sampling rate 31/08/23 / EAAP / M. Bonneau, J-A. Vayssade and L. Canario



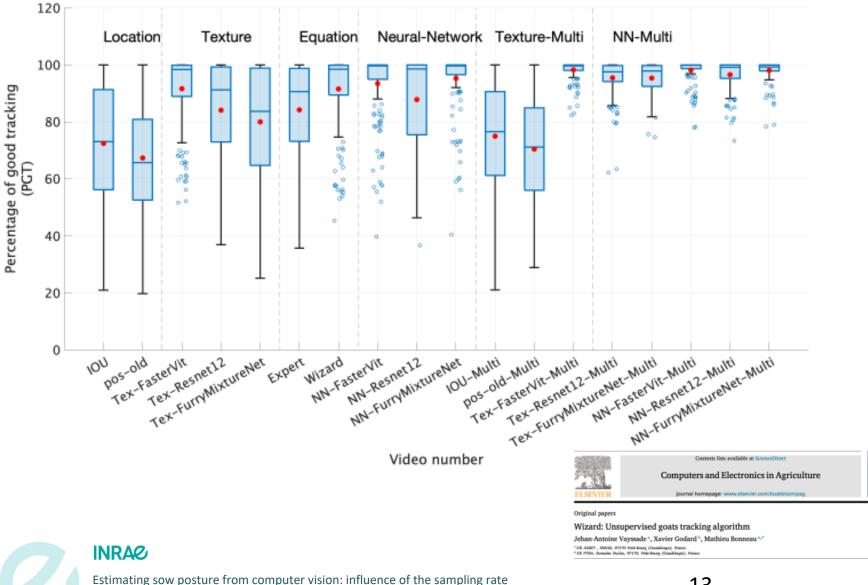
11

## > Tracking and behavior monitoring



https://gitlab.com/inra-urz/puzzle-livestock-tracking




#### INRAe

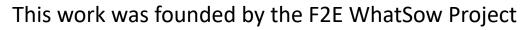
Estimating sow posture from computer vision: influence of the sampling rate 31/08/23 / EAAP / M. Bonneau, J-A. Vayssade and L. Canario



12

## > Tracking and behavior monitoring




31/08/23 / EAAP / M. Bonneau, J-A. Vayssade and L. Canario

13

C O

### **THANK YOU**

INRA







# France Futur Élevage