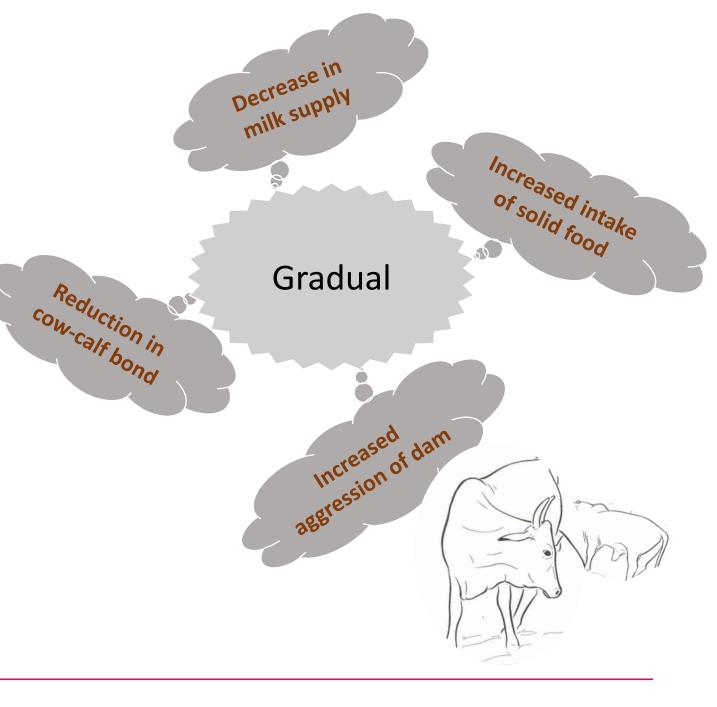


JNIKASSEL ÖKOLOGISCHE / ERSITÄT AGRAR WISSENSCHAFTEN

## Detection of multiple feeding behaviours in calves using noseband and accelerometer sensors

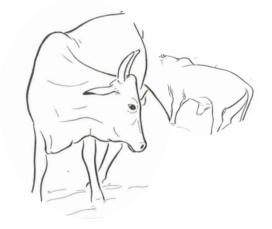
Sowah Addo, Masoud Safari, Katharina A. Zipp, Friedger Freytag, Ute Knierim


Faculty of Organic Agricultural Sciences, University of Kassel D-37213 Witzenhausen, Germany

 74<sup>th</sup> Annual Meeting of the European Federation of Animal Science Lyon, France , 26<sup>th</sup> August - 1<sup>th</sup> September 2023
 Session 89, Abstract number 42635, uk069108@uni-kassel.de

### Background

#### **Natural Weaning**


- Gradual process (Reinhardt & Reinhardt, 1981)
- Between 7 and 14 months
- Exposure to physiological, social & environmental stressors that impact calves' welfare (Enríquez et al., 2011)



Background

#### **Natural Weaning**

- Little knowledge about cattle behaviour during natural weaning
- Behaviour changes during lasts at least 2 months (Johansen 2018)
- Only chance observations of suckling bouts until now
- Live observation and video technique can be challenging under natural conditions
- Sensor-based assessment of behaviour needed



### Background

- Sensor-based systems now in use
  - ✓ CowManager, AfiAct Pedometer Plus...
  - ✓ Extensive use of triaxial accelerometer (Riaboff et al., 2022)
  - $\checkmark$  No clear recommendations
- Little research on techniques to assess suckling, feeding and rumination in calves
  - ✓ Kour et al., 2018
  - ✓ Carslake et al., 2020

### To predict suckling, feeding and ruminating behaviours of calves using a combination of noseband pressure and triaxial accelerometer sensor variables

✓ Compare 6 different epoch datasets

Aim

✓ Compare 3 different machine learning (ML) algorithms

## Contribution to methods of assessing multiple behaviour of calves under near-natural condition

Photo: Zipp

# • Fed grass silage, hay and concentrate

Animals

### Data recording

• 6 Males & 4 Females

• 61 – 85 days of age

• Charolais X Welsh Black

• MSR Electronics GmbH (145) logger

Materials & Methods

- 2-3 days of familiarization
- Recording frequency of 20 Hz (mostly)

March, 2020

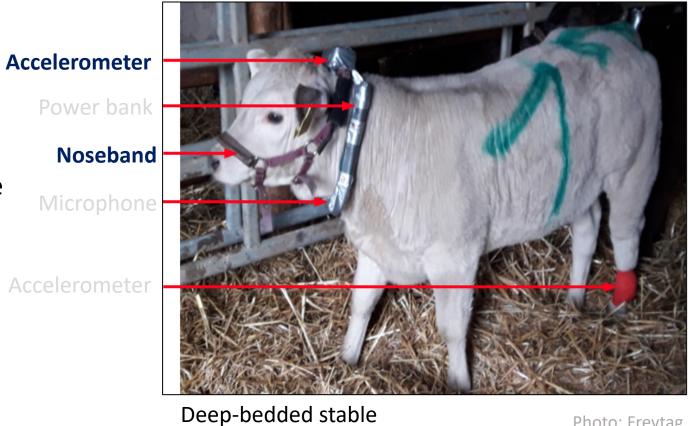





Photo: Freytag

### Materials & Methods

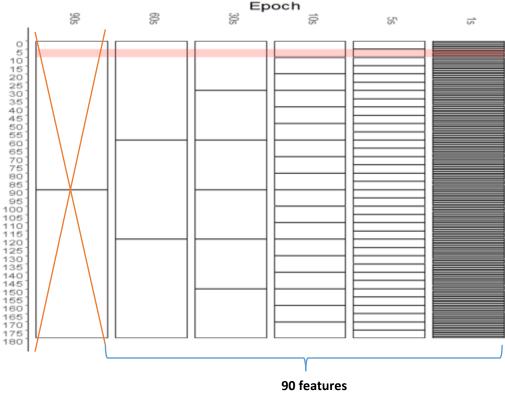
#### Continuous focal observation

- Time period: 06:30-18:30
- 10 h/animal and split into 30 min observation window
- Pocket Observer (Noldus Information Technology BV)
- Start and stop timestamp of each behavioural activity
- Activities other than *suckling, feeding* and *ruminating* denoted as "other"



Photo: Freytag

| Behaviour             |            |  |  |  |  |  |
|-----------------------|------------|--|--|--|--|--|
| Suckling at the udder | Start/Stop |  |  |  |  |  |
| Feeding (eating)      | Start/Stop |  |  |  |  |  |
| Ruminating            | Start/Stop |  |  |  |  |  |
| Walking               | Start/Stop |  |  |  |  |  |
| Lying                 | Start/Stop |  |  |  |  |  |
| Standing              | Start/Stop |  |  |  |  |  |


### Materials & Methods

#### **Data processing**

- Data fusion by timestamp (R software)
- Feature extraction from raw data
  - ✓ Raw: pressure, acc\_x, acc\_y, acc\_z
  - ✓ 18 features: adapted to Barwick et al., 2018; Benaissa et al., 2019
  - ✓ Summary over fixed time intervals (Epochs): 1s, 5s, 10s, 30s, and 60s
  - ✓ Generation of mixed epoch dataset by combining all 5 datasets according to timestamp (Chang et al. 2022)

#### Example of a 1 s epoch dataset (18 X 34,247)

| Timestamp        | meanP  | meanX | meanY   | meanZ  | minP   | minX  | minY  | minZ  | maxP | maxX | maxY   | maxZ  | sdP    | sdX     | sdY     | sdZ    | meanAll3 | MI_acc   | Activity   |
|------------------|--------|-------|---------|--------|--------|-------|-------|-------|------|------|--------|-------|--------|---------|---------|--------|----------|----------|------------|
| 3/7/2020 9:34:01 | 1383.7 | 0.911 | -0.1767 | 0.2799 | 1372.2 | 0.766 | -0.25 | 0.219 | 1421 | 1.00 | -0.109 | 0.313 | 15.987 | 0.06977 | 0.04176 | 0.0326 | 1.0142   | 0.970258 | Rumination |
| 3/7/2020 9:34:02 | 1391.0 | 0.923 | -0.1845 | 0.2765 | 1370.8 | 0.797 | -0.25 | 0.219 | 1423 | 1.02 | -0.141 | 0.359 | 20.793 | 0.07008 | 0.03802 | 0.0471 | 1.0154   | 0.982714 | Rumination |

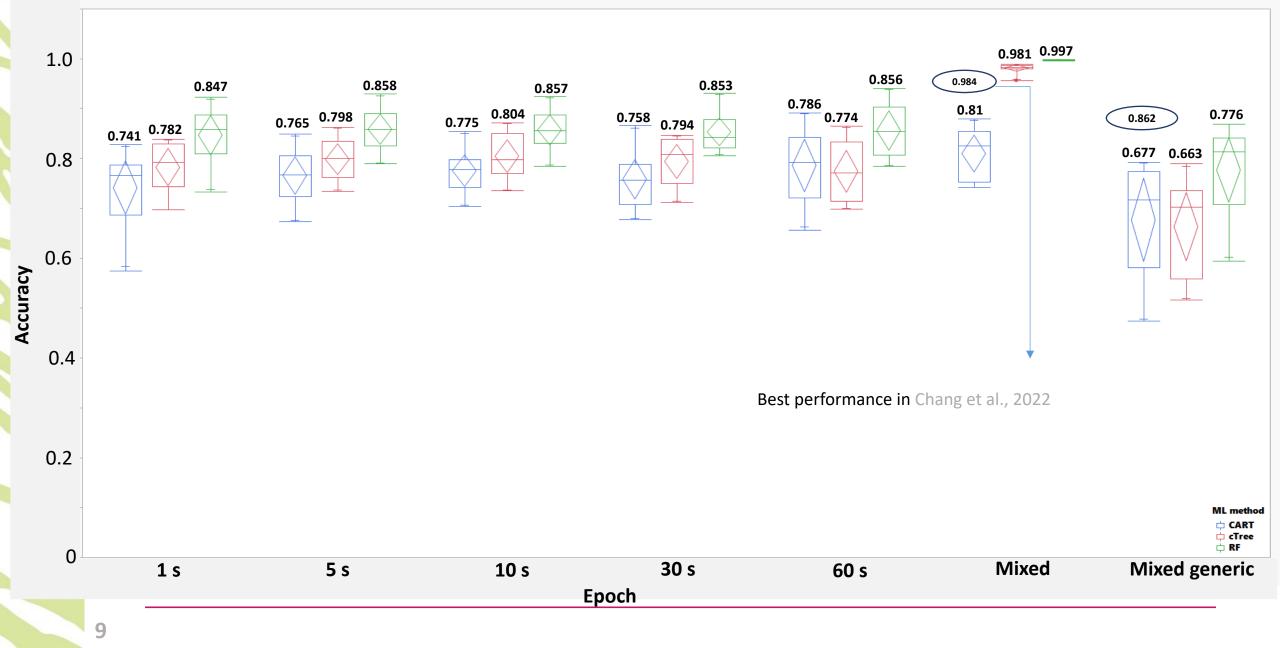


Chang et al. 2022: Adapted

### Materials & Methods

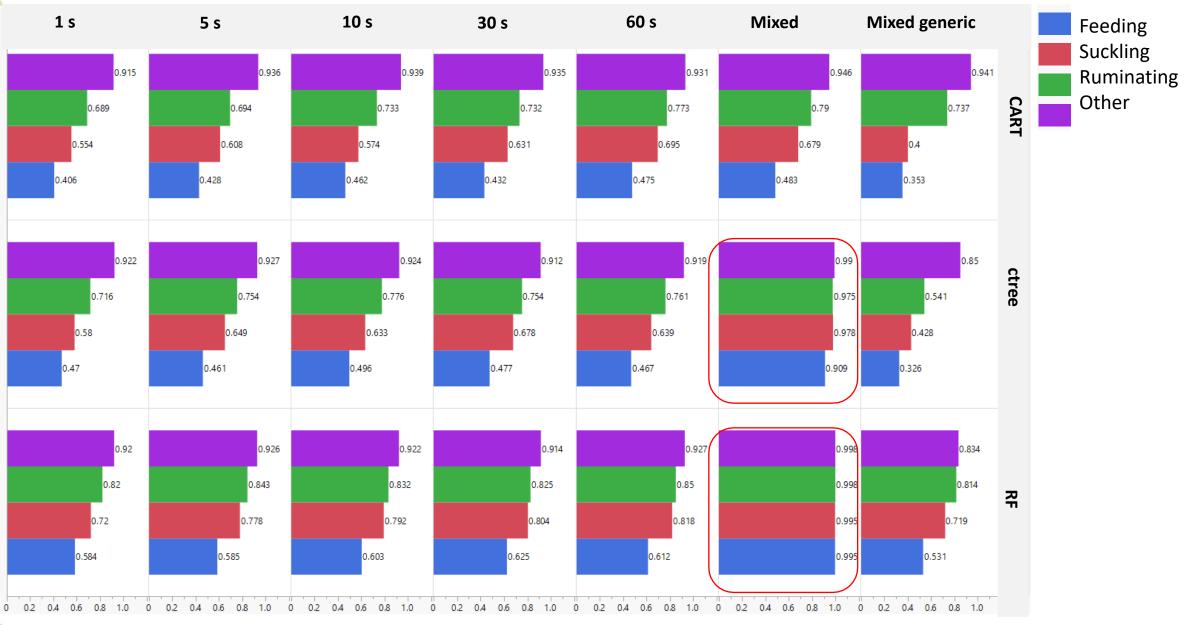
#### Modelling

- Application of 3 ML algorithms to each of the 6 dataset
  - ✓ Classification and regression tree (CART) rpart (Therneau et al., 2022)
  - ✓ Conditional inference tree (ctree) party (Hothorn et al., 2022)
  - ✓ Random forest (**RF**) Scikit-learn (Pedregosa et al., 2011)
- Individual prediction model
  - ✓ Training & validation sets 70%:30%
- Generic model
  - ✓ Leave-one-out CV (Mixed epoch, RF)
- Balancing of training dataset (SMOTETomek)
  - ✓ Combination of over- and under-sampling methods

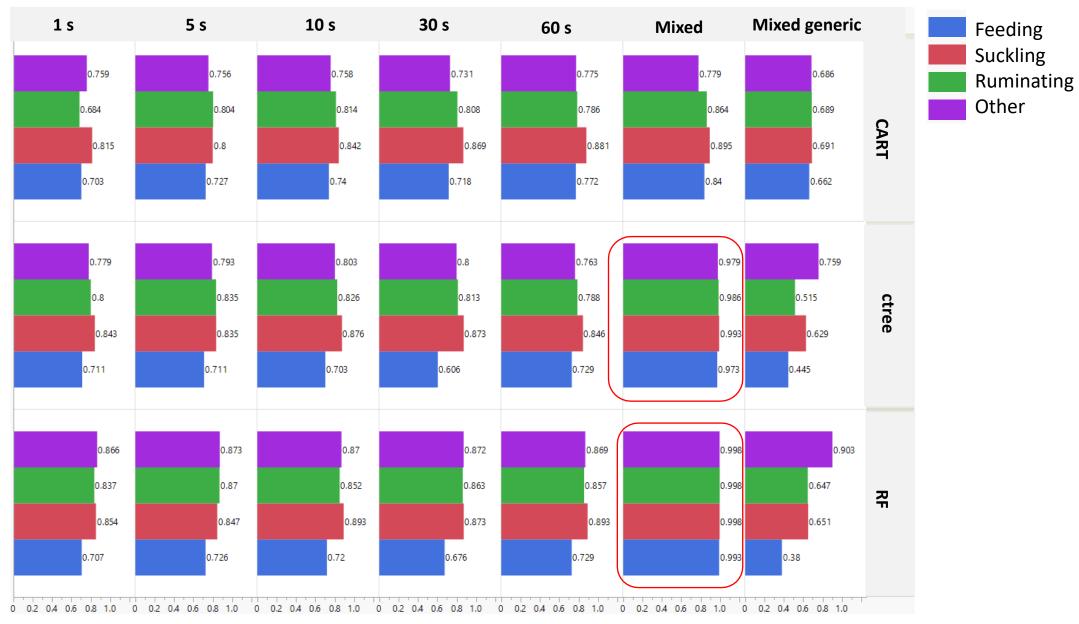

#### Validation

accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ sensitivity =  $\frac{TP}{TP + FN}$ specificity =  $\frac{TN}{TN + FP}$ precision =  $\frac{TP}{TP + FP}$ 

#### **Contribution of variables**


The permutation importance of variables was calculated to rank predictors

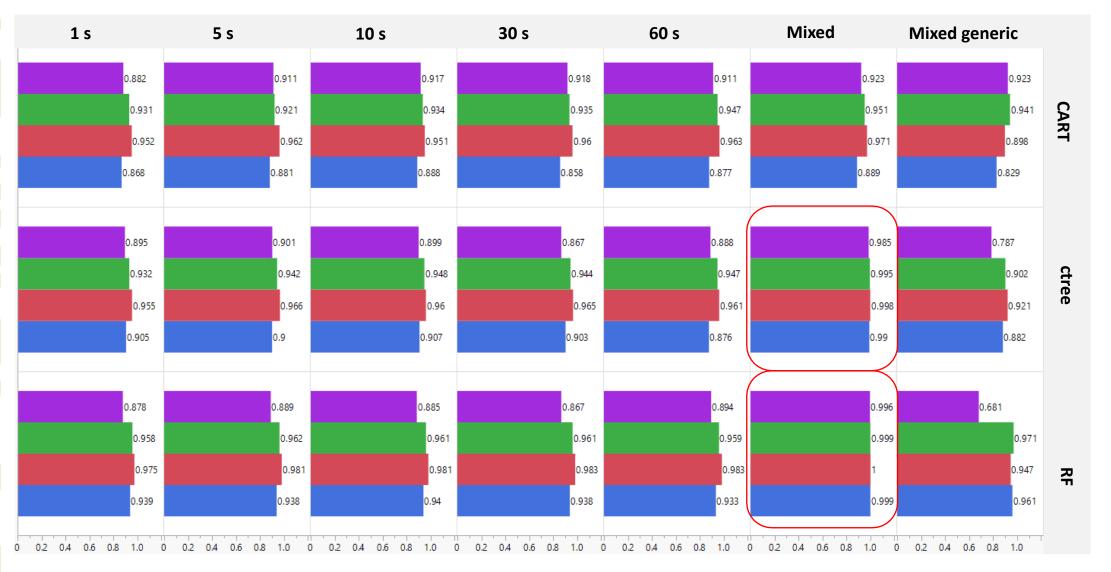
### Results & discussion - Accuracy




### Results & discussion - Precision

10




### Results & discussion - Sensitivity



11

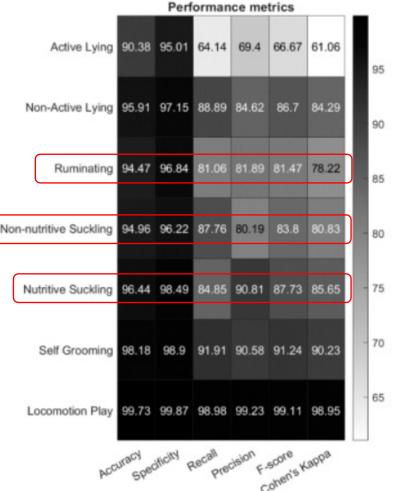
### Results & discussion - Specificity





### Results & discussion - Precision

#### Variable importance


- Highest ranking variables from pressure (100%)
- Variance in pressure at 30 s &
  60 s epoch equally important
- 60 s consistent with Chang et al.
  2022

#### Best ranking variables – 3 out of 90

| Animal | 1st         | 2nd         | 3rd         |
|--------|-------------|-------------|-------------|
| 1      | sd(P)_30s   | sd(P)_60s   | min(Y)_60s  |
| 2      | max(P)_60s  | mean(Z)_60s | min(X)_60s  |
| 3      | mean(P)_60s | max(P)_30s  | sd(P)_60s   |
| 4      | sd(P)_60s   | max(Z)_30s  | max(Y)_60s  |
| 5      | sd(P)_60s   | sd(X)_60s   | max(Z)_30s  |
| 6      | min(P)_30s  | meanAll_30s | sd(P)_30s   |
| 7      | sd(P)_30s   | max(P)_60s  | mean(P)_60s |
| 8      | sd(P)_30s   | sd(Z)_30s   | sd(P)_60s   |
| 9      | sd(P)_30s   | sd(Z)_30s   | sd(X)_60s   |
| 10     | max(P)_60s  | sd(P)_60s   | mean(P)_60s |

### Results & discussion - General

- Previous comprehensive study in calves (Carslake et al., 2020)
  - ✓ 4 h of data & 44 variables from accelerometer readings
  - $\checkmark$  Windows sizes of 1 s 10 s with a 50% overlap (**3 s optimal**)
  - ✓ Overall accuracy of 95.72% < 99% (mixed; RF or ctree)
- Sensor positioning may not be ideal for practical implementation
- Benefit/cost of using multiple sensors





- A combination of pressure and acceleration variables offers a huge potential to simultaneously predict different feeding behaviours in calves
- The implementation of a mixed epoch dataset with RF and ctree seems promising for higher prediction performance

# Thank you for your attention

### References

- Barwick, Jamie, et al. "Categorising sheep activity using a tri-axial accelerometer." Computers and Electronics in Agriculture 145 (2018): 289-297
- Benaissa, Said, et al. "On the use of on-cow accelerometers for the classification of behaviours in dairy barns." Research in veterinary science 125 (2019): 425-433
- Carslake, Charles, Jorge A. Vázquez-Diosdado, and Jasmeet Kaler. "Machine learning algorithms to classify and quantify multiple behaviours in dairy calves using a sensor: Moving beyond classification in precision livestock." Sensors 21.1 (2020): 88.
- Hothorn, Torsten, et al. "Party: A laboratory for recursive partytioning." (2022)
- Johansen, F.P. Exploration of the natural weaning behaviour of beef cattle on Salisbury Plain. Bachelorthesis, Bristol Vet School, Universität Bristol, (2018)
- Kour, Harpreet, et al. "Validation of accelerometer use to measure suckling behaviour in Northern Australian beef calves." Applied Animal Behaviour Science 202 (2018): 1-6.
- Reinhardt V, Reinhardt A: Natural sucking performance and age of weaning in zebu cattle (Bos indicus). J Agric Sci 1981, 96:309-312
- Riaboff, L., Shalloo, L., Smeaton, A. F., Couvreur, S., Madouasse, A., & Keane, M. T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Computers and Electronics in Agriculture. Elsevier B.V., 2022
- Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011
- Therneau, T., B. Atkinson, and B. Ripley. "Recursive partitioning for classification, regression and survival trees. An
  implementation of most of the functionality of the 1984 book by Breiman, Friedman, Olshen and Stone." Institute for
  Statistics and Mathematics (2022).