

74th Annual Meeting of the EAAP in Lyon, France, on 26th August - 1st September 2023

Use of linear data for characterization and selection of sport horses with highest genetic potential

K.F. Stock^{1*}, A. Hahn², I. Workel², W. Schulze-Schleppinghoff²

¹ IT Solutions for Animal Production (vit), Verden (Aller), Germany,
 ² Oldenburger Pferdezuchtverband e.V., Vechta, Germany;
 *E-mail: <u>friederike.katharina.stock@vit.de</u>

Outline

background:

developments in sport horse breeding and their discussed side effects

- focus on sport horses with highest genetic potential for performance
 - comprehensive characterization
 - monitoring / risk analysis
- implications
 for sport horse breeding

Sport horse breeding

- success in riding sport as ultimate breeding goal
 - specialization (dressage, show jumping) for maximal genetic gain
- framework for fast genetic progress
 - breeding programs and new tools for targeted decision support
 - high level of internationality (mostly open breeding policies)
 - challenges:
 - early and reliable identification of horses with highest genetic potential for sport performance
 - prevention of overemphasis of traits (side effects of 'extreme breeding')
 - guide to balanced breeding decisions (responsible, sustainable breeding)

Study approach

- comprehensive characterization of top sport horses (from breeders' perspective)
 - sport performance in dressage and show-jumping
 - wide range of conformation traits
 - specific aspects of movement and jumping
- monitoring / risk analysis: systematic screening for patterns which may relate to detrimental long-term effects
- development of data-driven breeding advice with special attention paid to potentially unfavorable developments

Study population & sources of data

- active broodmares reflecting the two Oldenburg breeding populations specialized on dressage (D / OL) and jumping (J / OS)
 - routine genetic evaluations \rightarrow estimated breeding values (EBV)
 - EBV for sport traits from the national genetic evaluation for riding horses in Germany (FN)
 - rank-based \rightarrow individual ranking among all starters
 - level-based \rightarrow highest level achieved (lifetime summary)
 - dressage (DR, DL) and show-jumping (JR, JL)
 - phenotypes and EBV for linear conformation and performance traits from the genetic evaluation of the Oldenburg studbooks (OL+OS)

Linking of data

National genetic evaluation for riding horses

EBV for sport performance in dressage (D) and show-jumping (J)

- sport data 1995-2022 (national /FN, international/FEI)
- 6.1m starts of 279k horses for D, 13.9m starts of 328k horses for J
- 2 traits per discipline: ranking (R) and highest level achieved (L)
- multiple-trait repeatability (R) and single trait (L) linear animal models

mares ranking among the 10% or 25% of mares with highest EBV for sport performance:
T10%-DR (T25%-DR), T10%-DL (T25%-DL)
T10%-JR (T25%-JR), T10-JL (T25%-JL)

Genetic evaluation for linear conformation and performance traits (Oldenburg studbooks)

EBV for linear traits (LIN-EBV)

- OL+OS linear data 2012-2022
- 34,601 linear profiles of 31,936 horses (foals, adult horses)
- 46 traits: conformation, special remarks, gaits, jumping
- single- / multiple-trait repeatability linear animal models

31 Aug 2023 74th EAAP Annual Meeting, Lyon, France: Use of linear data in the selection of sport horses (Stock et al.)

Тор

'extreme EBV'

'extreme phenotype'

Data basis

- performance in sport competitions:
 10,298 mares with sport EBV (N_{OL} = 5,731, N_{OS} = 4,567)
 - linear conformation, gaits, special remarks, jumping: 12,172 mares with LIN-EBV (published: N_{OL} = 3,780, N_{OS} = 1,744)

statistical analyses:

- reference to relative breeding values (RBVs; mean 100, std 20)
- minimum reliability of considered EBVs
 - sport EBV reliability ≥ 30% (2,873 5,187 mares; R > L) → percentiles
 - LIN-EBV based on own performance and/or at least 2 offspring
 - subsets of 1,084 (JL) to 2,737 (DR) mares

Statistical analyses

- I. characterization of top performance mares (sport)
 - by referring to probabilities of extreme EBV for linear traits (top, bottom)
 - by evaluating probabilities of progeny with extreme phenotypes (+/-3)
 - higher probabilities in top mares than in the non-top mares?
- II. monitoring of <u>'extreme breeding candidates' among the linear traits</u>
 - by referring to EBV for sport and functionally important linear traits
 - by referring to progeny phenotypes of functionally important linear traits
 - higher probabilities in mares with extreme LIN-EBV than in the others?
- least square means (LSM) phenotypes: age groups Y (young), A (adult), consideration of age and pe

Results I Top10%-EBV performance / LIN-EBV

Trait	Linear trait	DL	DR	JL	JR
group	(probability of Top10% LIN-EBV or Bottom10% LIN-EBV)	(N=1,277)	(N=2,737)	(N=1,084)	(N=1,390)
walk	freedom of shoulders [short - <u>long</u>]	< 0.001	< 0.001	n.s.	n.s.
	reach of hind limbs (overstepping) [inactive (short) - active (long)]	< 0.001	<0.001	n.s.	n.s.
trot	freedom of shoulders [short - <u>long</u>]	< 0.001	<0.001	n.s.	n.s.
	mechanics of front limbs [straight forelimb - much knee action]	<0.001	<0.001	n.s.	n.s.
	impulsion [weak - <u>powerful]</u>	<0.001	<0.001	n.s.	n.s.
	thrust (hind limb activity) [inactive, sluggish - <u>active, energetic]</u>	<0.001	<0.001	n.s.	n.s.
	carrying power [pushing - <u>carrying</u>]	<0.001	<0.001	n.s.	n.s.
	suppleness [tense - <u>supple]</u>	0.002	<0.001	n.s.	n.s.
canter	freedom of shoulders [short - <u>long]</u>	< 0.001	<0.001	n.s.	n.s.
	mechanics of front limbs [straight forelimb - much knee action]	<0.001	<0.001	n.s.	n.s.
	direction of movement [downhill - <u>uphill]</u>	<0.001	<0.001	n.s.	n.s.
	Thrust (hind limb activity) [inactive, sluggish - <u>active, energetic]</u>	< 0.001	<0.001	n.s.	n.s.
jumping	rhythm [not fluent - <u>fluent]</u>			<0.001	<0.001
	take-off power [weak - <u>powerful]</u>			<0.001	<0.001
	reflexes [slow, inflexible - <u>quick, flexible]</u>			n.s.	<0.001
	attention [inattentive - attentive]			n.s.	<0.001
	overview [little - <u>much]</u>			<0.001	<0.001
	ability [little scope - <u>much scope]</u>			<0.001	<0.001
	foreleg angulation [straight - angulated]			n.s.	0.066
	back technique (bascule) [hollow back - <u>rounded back]</u>			0.054	n.s.
	hind leg technique (haunches) [tight (under the body) - long hind leg]			n.s.	n.s.

patterns reflecting genetic correlations
 r_g ↑→ probability of co-occurrence of 'extreme' EBV ↑

8

D vs. J 🗸

Results II Top10%-EBV performance / LIN-EBV

 Ø
 OLDENBURGER

 Ø
 BREEDING & SPORT

traits of functional relevance and with intermediate optima requiring special attention

> patterns reflecting genetic correlations

 r_g ↑→ probability of co-occurrence of 'extreme' EBV ↑

9

Results III Top10%-EBV performance / LIN-EBV

traits of functional relevance and with intermediate optima requiring special attention

- patterns reflecting genetic correlations
- r_g ↑→ probability of co-occurrence of 'extreme' EBV ↑

10

Results IV Top10%-EBV performance / LIN-phen

traits of functional relevance and with intermediate optima requiring special attention

- rarely found extremes among progeny phenotypes of the analyzed groups of mares
- <u>no indications</u> of strong shifts towards extreme linear trait expressions (phenotypes) when focusing on top sport performance

11

LSM LIN-phen -3 in %

DR-Y

0.08

0.19

DR-A

0.06

0.64

DL-A

0.09

0.59

DL-Y

0.09

0.00

TROT Thrust	Top10%-EBV	LSM LIN-phen +3 in %				(1)	Caliber	Top10%-EBV
(hind limb activity)	(DL, DR)	DL-Y	DL-A	DR-Y	DR-A	(.,	[<u>light</u> -	(DL <i>,</i> DR)
[inactive, sluggish -	0 (no)	0.98	1.69	1.19	2.03		heavy]	0 (no)
active, energetic]	1 (yes)	2.41	3.32	2.88	5.91			1 (yes)

Results V Top10%- or Bot10%-LIN-EBV / LIN-phen

Trait	Linear trait	LIN-EBV	LIN-phen		
group	(probability of Top10% or Bottom10% LIN-EBV		Y	Α	
	and of linear phenotype of +3 or -3)				
format	Frame [small-framed - <u>large-framed</u>]	n.s.	n.s.	n.s.	
	Length of legs [short-legged - <u>long-legged</u>]	<0.001	n.s.	n.s.	
neck	Set of neck [low - <u>high]</u>	0.083	n.s.	n.s.	
back	Length of back [short - long]	n.s.	n.s.	n.s.	
	Angle (inclination) of croup [flat (level) - <u>sloping</u>]	0.018	n.s.	n.s.	
	Set of tail [<u>low</u> - high]	<0.001	n.s.	n.s.	
limbs	Length of FL pastern [short - <u>long</u>]	< 0.001	**	**	
	Stance of FL pastern [upright - <u>sloping (weak)</u>]	n.s.	n.s.	n.s.	
	Stance of HL pastern [upright - <u>weak]</u>	n.s.	n.s.	n.s.	
	Hock angulation [straight - <u>angulated</u>]	n.s.	n.s.	n.s.	
	Size of joints [<u>small</u> - big]	<0.001	n.s.	+	
	Toe stance of forelegs [toe-in - <u>toe-out]</u>	0.034	n.s.	n.s.	
	[<u>toe-in</u> - toe-out]	n.s.	n.s.	n.s.	
special	Tail tone [un-toned - over-toned]	0.007	n.s.	n.s.	
remark	[<u>un-toned</u> - over-toned]	<0.001	n.s.	n.s.	

traits of functional relevance and with intermediate optima requiring special attention

- genetic correlations between linear traits to be considered
- possible (unfavorable) side-effects of strong focus on particular linear trait aspects to be monitored

	Sport	Bot10%-LIN-EBV	LSM Top10% EBV in %		LSM Top10% EBV in %		LSM Top10% EBV in %		•	Length of	Bot10%-LIN-EBV	LSM Top10% LIN-EBV or LIN-phen +3 i		-phen +3 in %
V	performance	Caliber	DL	DR		FL pastern	Caliber	LIN-EBV	LIN-phen Y	LIN-phen A				
	- dressage	0 (no)	10.4	12.7		[short - <u>long</u>]	0 (no)	12.3	0.00	0.00				
		1 (yes)	15.8	23.1			1 (yes)	29.3	0.31	0.73				

Summary & conclusions

13

- patterns of 'extreme' breeding values \approx genetic correlation patterns
- significant genetic progress in sport performance and corresponding indicator traits, i.e. performance related linear traits, but no indications of alarming developments on phenotypic level
- comprehensive linear data allowing to illustrate risks of over-emphasis of single aspects ('candidates for extreme breeding')

Implications

14

- breeding values for linear traits as valuable tools for targeted improvements and sustainable progress in sport horse breeding
 - performance
 - functionality
 - genetic correlations implying correlated selection responses
 - use of 'high-resolution phenotyping' for systematic monitoring to recognize and counteract possible tendencies towards over-emphasis of certain aspects which may harm long-term functional integrity
 - responsibility of breeders not to lose sight of the 'overall picture' and to make balanced breeding decisions

Contact: PD Dr. habil. Kathrin F. Stock (E-mail: <u>friederike.katharina.stock@vit.de</u>; phone: +49-4231-955623)

TAKE HOME

use of 'high-resolution phenotyping' for systematic monitoring to recognize and counteract possible tendencies towards over-emphasis of certain aspects which may harm long-term functional integrity

 responsibility of breeders not to lose sight of the 'overall picture' and to make balanced breeding decisions
 Thank you