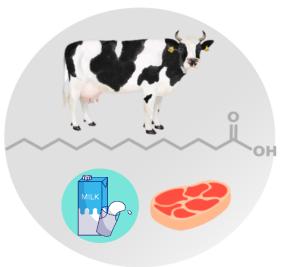
The second secon

EAAP 74th Annual Meeting – August 31st 2023

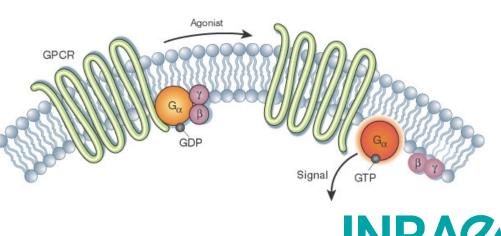
Tissue distribution and pharmacological characterization of bovine free fatty acids-sensing GPCRs


<u>Tainara C. Michelotti</u>¹, Muriel Bonnet¹, Valérie Lamothe², Sébastien Bes¹, Guillaume Durand^{1,2} ¹INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122, Saint-Genès-Champanelle, France ²Bordeaux Sciences Agro, 33175 Gradignan, France

Abstract number: 42577

Fatty acids (FA):

- Growth, production, and metabolism adaptation (e.g., peripartum)
- More than energy sources
- **Signaling molecules** \Rightarrow regulation of metabolic functions
- Binding to different receptors:
 - $_{\odot}$ SREBP, PPARs, liver X receptor (LXR) nuclear
 - \circ TLR4, TLR2, CD36 cell membrane
 - $_{\odot}$ G protein-coupled receptors



Fatty acids (FA):

- Growth, production, and metabolism adaptation (e.g., peripartum)
- More than energy sources
- **Signaling molecules →** regulation of metabolic functions
- Binding to different receptors:

 SREBP, PPARs, liver X receptor (LXR) nuclear
 TLR4, TLR2, CD36 cell membrane
 G protein-coupled receptors

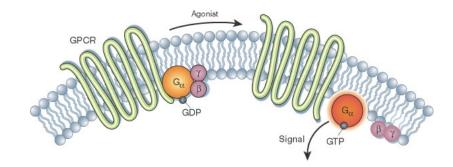
G protein-coupled receptors (GPCR):

- Many GPCRs are activated by FFA
- FFAR1, 2, 3 and 4, GPR84

GPCR GQ GQ GDP GDP GDP GTP BY

Humans and mice

- $_{\odot}\,$ Tissue distribution/pharmacological properties
- Activation of signaling pathways and their associated biological outcomes:
 - e.g., insulin secretion, inflammation, lipolysis
- FFAR as pharmacological targets for the treatment of different diseases



G protein-coupled receptors (GPCR):

- Many GPCRs are activated by FFA
- FFAR1, 2, 3 and 4, GPR84

Humans and mice

- Tissue distribution/pharmacological properties
- Activation of signaling pathways and their associated biological outcomes:
 - e.g., insulin secretion, inflammation, lipolysis
- FFAR as pharmacological targets for the treatment of different diseases

Dairy cows

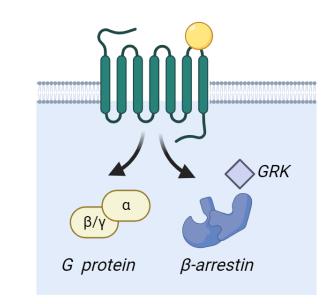
- $\circ~$ Scarce information
- $\circ~$ Gene expression on different tissues

- The objective of our study was to characterize 5 bovine FFARs (FFAR1 to 4, and GPR84) in regards of tissue distribution
- Moreover, we aimed to characterize the pharmacological properties of FFARs (FFAR1 and FFAR2)

Materials and methods

Tissue distribution:

- 16 Charolais bulls (16-18 months old)
- Samples from 6 tissues:
 - Liver
 Spleen
 Ileum
 Longissimus thoracis (LT)
 - o **Rectum**
- Perirenal adipose tissue (PRAT)
- Total RNA was extracted and gene expression assessed by RT-qPCR



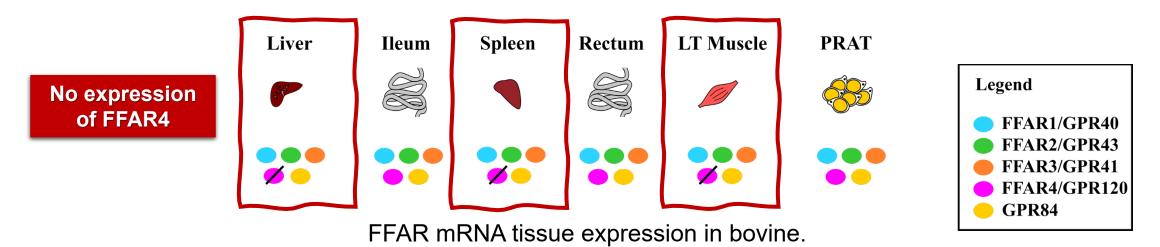
Materials and methods

Pharmacological properties:

- HEK293a cells
- FFAR transfected individually

 mG proteins (mGq, mGi, mG12, mGs)
 B arrestin

Unbiased ligand: G = B Bias ligand: G > B or G < B


• Bioluminescence Resonance Energy Transfer (BRET)

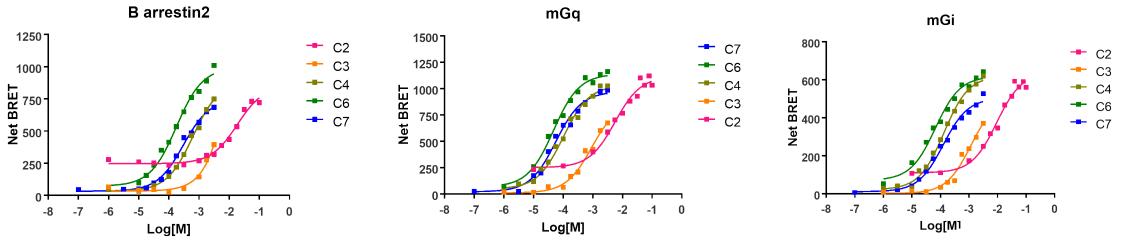
Tissue distribution:

- FFAR1, FFAR2, FFAR3 and GPR84 expressed in all studied tissues
- FFAR4 expression was restricted to <u>ileum</u>, <u>rectum</u>, and <u>PRAT</u>

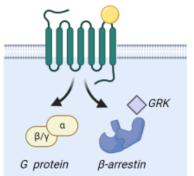
IR

Results

Pharmacological properties:


Potency (-logEC50 ± SEM) of SCFA in G proteins and B arrestin signaling in bovine FFAR2.

Fatty acid	mGi	mGq	B arrestin 2
C2	1.961 ± 0.07	1.961 ± 0.07	1.729 ± 0.09
C3	2.211 ± 0.07	2.211 ± 0.07	1.661 ± 0.06
C4	3.906 ± 0.06	3.906 ± 0.06	3.035 ± 0.06
C6	4.036 ± 0.07	4.036 ± 0.07	3.842 ± 0.06
C7	3.901 ± 0.08	3.901 ± 0.08	3.518 ± 0.07
C8 and C10	-	-	-


• C8 and C10: Did not showed a typical dose-response curve

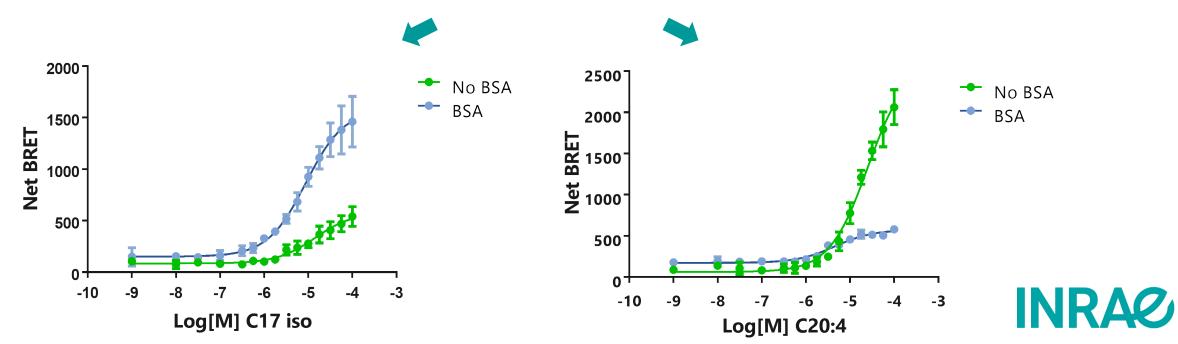
Pharmacological properties:

- C6: Greatest efficacy (Emax) and potency (-logEC50)
- No bias observed for SCFA in activating mGq, mGi or B arrestin 2 signaling

Unbiased ligand: G = B

Pharmacological properties:

- LCFA conjugated or not with BSA (4:1 molar ratio)
- Fatty acids from 7 to 22 carbons
- G protein recruitment restricted to mGq:


C22:6/BSA: Greatest potency (EC50) \Longrightarrow Omega-3, Anti-inflammatory and antioxidant properties C18:3 (ALA): Greatest efficacy (Emax) \Longrightarrow Omega-3, Essential fatty acid

Pharmacological properties:

- Efficacy (Emax) and potency (-logEC50) affected by FFA and BSA
- Efficacy (Emax): Either increased or decreased by BSA conjugation

Conclusions and Future Perspectives

Bovine FFAR2:

- Greater potency in SCFA with more carbons (C6)
 - $_{\odot}$ Contrast to what is observed in humans (C2)

Bovine FFAR1:

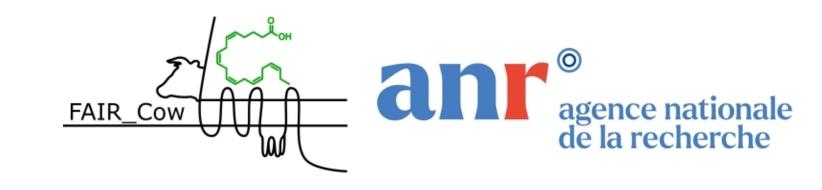
Conjugation with BSA affects FFAR1 response: <u>Possible implications</u>?

 Activation of receptors in the GI tract by dietary FFA
 Periods of alterations in FFA:albumin ratio (e.g., during transition period)

Conclusions and Future Perspectives

Future perspective:

- Assess B arrestin recruitment of FFAR1
- Determine pharmacological properties of the others bovine FFAR
- Further understand the biological outcomes associated with the activation of FFARs in cattle
- Possible association with, *e.g.*, metabolic disorders, adaptation around parturition?


Acknowledgments

INRA

Dr. Muriel Bonnet Dr. Guillaume Durand Sébastien Bes Equipe BIOMARQUEURS – INRAE UMRH Equipe BIOS – UMR PRC

Contact: Tainara.Michelotti@inrae.fr

Thank you!