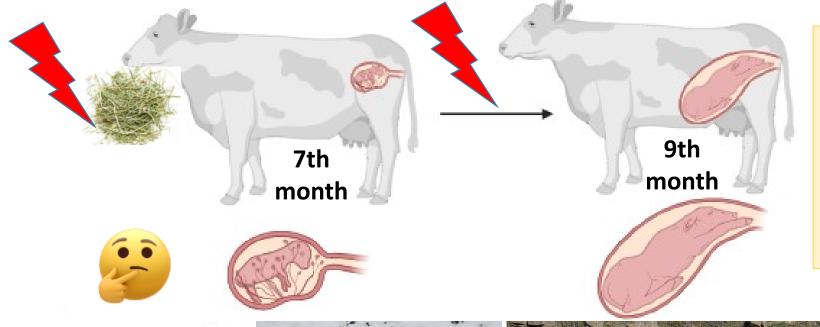


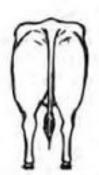
Maternal nutrition carry-over effects on beef cow colostrum but not on milk fatty acid composition

Abstract number 41969, Session 92, Book of Abstracts page 996

N. Escalera-Moreno¹, B. Serrano-Pérez¹, E. Molina¹, L. López de Armentia², A. Sanz², J. Álvarez-Rodríguez¹

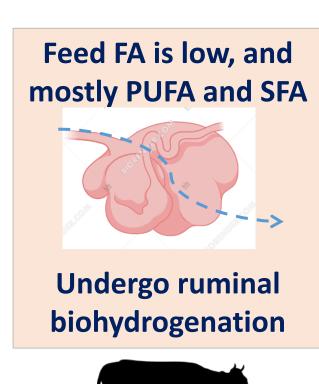
¹ University of Lleida, Spain

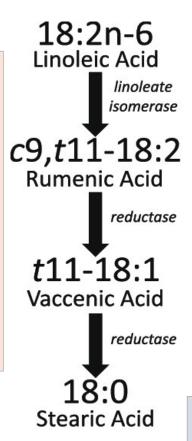

² Agrifood Research and Technology Centre of Aragón (CITA), Spain


Introduction

Beef cows undernourished the last trimester of pregnancy as a result of **low feed resources** \rightarrow carry-over effects on the cow-calf pairs?

- ↑ Metabolic disfunction?
- ↑ Inflammation?
- **↓** Fertility?
- **↓** Body-weight at birth?
- **↓** Colostrum and milk?
- **↓** Post-natal development?





Introduction

Rumen digestion and colostrogenesis is sensitive to fatty acid (FA) intake

↑C18:2 n-6 intake may ↑ colostrum antibodies

Reviewed by Hare et al. (2023). Anim Frontiers 13 (3). 24–36.

https://doi.org/10.1093/af/vfad031

Perhaps a physiological mechanism in dams to protect the newborn through the mammary gland FA profile?

Introduction

How do Spanish beef breeds cope with maternal undernutrition?

Parda de Montaña

Derives from Brown Swiss (grey-coated), introduced two centuries ago as a dual purpose breed (milk-beef)

Pirenaica

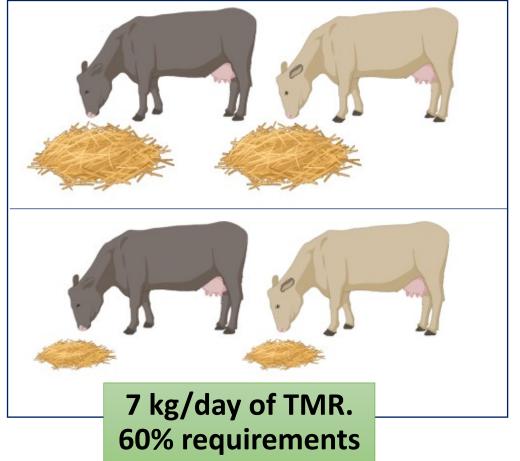
Derives from local hardy cows (blond-coated), Past triple purposes (work-milk-beef)

Background: Parda de Montaña showed lower BCS at calving and higher calf BW at birth, and higher milk yield at week 3 post-partum than Pirenaica breed (11.0 vs. 9.3 kg/day), regardless of feeding level during the last trimester of gestation (Noya et al., 2022).

Objective

Aims

To evaluate the effects of **prepartum maternal nutrition** (60% vs. 100% of their nutritional requirements during 3 months before calving) and **beef breed** (Parda de Montaña vs. Pirenaica) on the **fatty acid profile of the colostrum and milk**.



Experimental set-up

n=80 cows (autumn-winter season), 2 x 2 factorial design

Pregnancy

10.5 kg/day of TMR. 100% requirements

Eight separate loose-house pens (4 replicate pens per feeding level)

Lactation

10.5 kg/day of TMR. 100% requirements

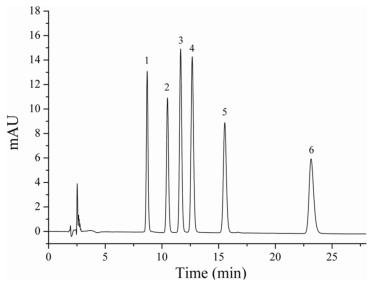
Material and methods

TMR ingredients:

- Barley straw (49.6%).
- Barley grain (24.8%).
- Alfalfa pellet (8.4%).
- Rapeseed meal (6.9%).
- Sugar-beef pulp (4.5%).
- Soybean meal (2.5%).
- Vitamins-minerals-additives (3.3%).

Total fatty acids (g/100 g of feed)	0.7	
g FA/100 g of fatty acid methyl ester	rs in feed:	
C14:0. myristic	1.7	
C16:0. palmitic 2nd	29.8	SFA
C18:0. stearic	2.2	
C20:0. arachidic	0.6	
C18:1 cis-9. oleic	12.9	MUFA
C18:1 cis-11. cis-vaccenic	2.1	
C18:2 n-6. LA. linoleic	37.1	
C18:3 n-3. ALA. α-linolenic	9.7	PUFA
C18:3 n-6. GLA. γ-linolenic	4.0	_

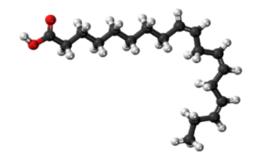
Sampling and processing


- Colostrum was manually milked <12h post-partum (80 ml in total, mixing 4 quarters).
- Milk was machine milked by oxytocin technique at week 3 post-partum (6-h interval between milking, 2 to 3 kg of milk recorded).
- 40-ml samples were freeze-dried. A variable amount of lyophilized milk was weighed to obtain approximately 40 mg of lipids (Giannuzzi et al.. 2022).
- Total solid contents of colostrum and milk were calculated as the proportion of freeze-dried residual out of the raw milk content.

Material and methods

Fatty acids analysis

- Undecanoic acid (C11:0) was used as internal standard.
- The samples were directly methylated with sodium methoxide (Wilms et al., 2022).
- Fatty acid methyl esters (FAME) were analyzed with 7820A GC fitted with FID, auto sampler and a RTX-2330 column (105 m).
- Nine (for TMR diets) and thirty-two (for colostrum and milk) FAME peaks were identified by comparison with the peaks generated by injection of reference standards.
- The FAME were corrected for mass discrepancy based on determined **response factors**.



Material and methods

Statistical analysis

- The data were analyzed with the statistical package JMP Pro16 (SAS Institute Inc. Cary. NC. USA).
- Simple least squares models including the **feeding level** (100% or 60%) and **breed** (Parda or Pirenaica) as fixed effects.
- Single **interactions between fixed effects** were evaluated but they were finally removed from the model because **they were never significant** (P>0.05).

Total solids and fatty acids content

	Die	et	Breed			P-value	
Colostrum	100%	60%	Parda	Pirenaic	a SE	Diet	Breed
Total solids (g/100 g of colostrum)	27.6	27.3	26.6	28.3	0.73	NS	NS
Total FA (g/100 g of colostrum)	4.95	4.32	4.97	4.3	0.52	NS	NS
Milk							
Total solids (g/100 g of milk)	13.7	13.1	12.8	14.0	0.13	**	***
Total FA (g/100 g of milk)	3.77	3.66	3.60	3.83	0.1	NS	NS

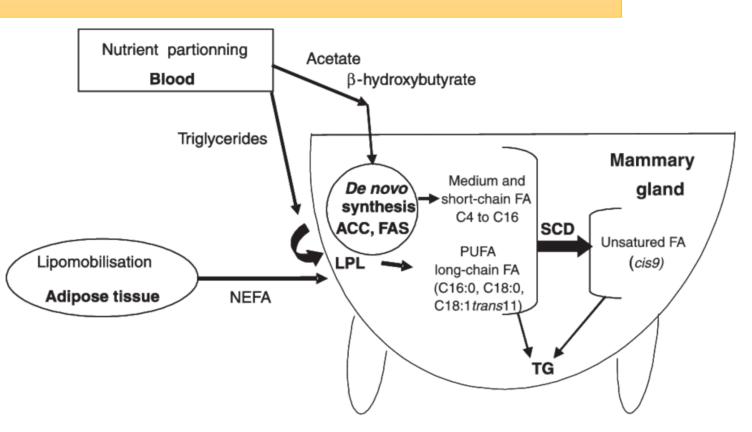
- ✓ In colostrum, prepartum nutrient restriction did not affect total solids nor FA amount.
- ✓ In milk, total solid content was reduced by previous nutrient restriction and in Parda de Montaña breed, but this difference could not be attributed to the amount of FA only.

Colostrum FA according to saturation

	Diet		В	reed		P-value	
(g/100 g FA)	100%	60%	Parda	Pirenaica	SE	Diet	Breed
Total SFA	69,89	63,72	64,59	69,01	0,64	***	***
Total MUFA	23,07	28,65	27,62	24,10	0,58	***	***
Total PUFA n-3	1,96	2,26	2,37	1,84	0,08	**	***
Total PUFA n-6	4,34	4,39	4,50	4,23	0,09	NS	*
Rumenic acid (CLA c9,t11)	0,71	0,97	0,88	0,80	0,03	***	*

- ✓ Nutrient-restricted cows decreased SFA at the expense of increasing MUFA, PUFA n-3 and rumenic acid content.
- ✓ Parda de Montaña breed had a similar response to nutrient-restricted cows, independently of feeding level.

Milk FA according to saturation


	Diet		В	reed		P-value	
(g/100 g FA)	100%	60%	Parda	Pirenaica	SE	Diet	Breed
Total SFA	64,85	65,04	64,31	65,57	0,63	NS	NS
Total MUFA	30,39	30,39	30,99	29,79	0,57	NS	NS
Total PUFA n-3	0,93	0,85	0,90	0,88	0,02	*	NS
Total PUFA n-6	2,55	2,44	2,50	2,49	0,05	NS	NS
Rumenic acid (CLA c9,t11)	1,28	1,27	1,29	1,26	0,04	NS	NS

[✓] Prepartum nutrient restriction did not affect the main milk FA at week 3 post-partum, but it reduced PUFA n-3 content.

[✓] Both breeds showed similar FA profile in lactation.

Three major pathways determining milk FA origin

- 1) **De novo** synthesized fom VFA substrates (C4:0 to C15:0)
- 2) **Mixed origin** from diet and tissue mobilization (C16:0+C16:1)
 - Extracted from arterial blood or
- 3) body adipose tissue **mobilization** (≥C17:0)

PUFA: PolyUnsaturated FA NEFA: Non Esterified FA

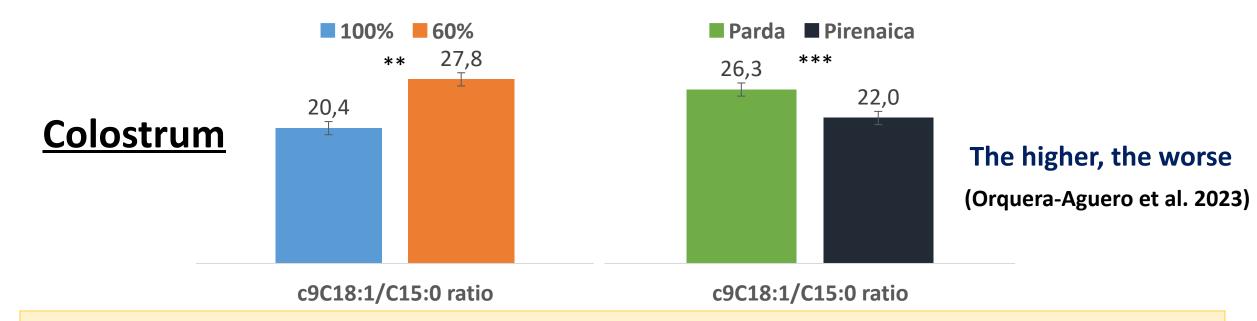
TG: Triglycerides

ACC: Acetyl-CoA Carboxylase FAS: Fatty Acid Synthase LPL: LipoProtein Lipase

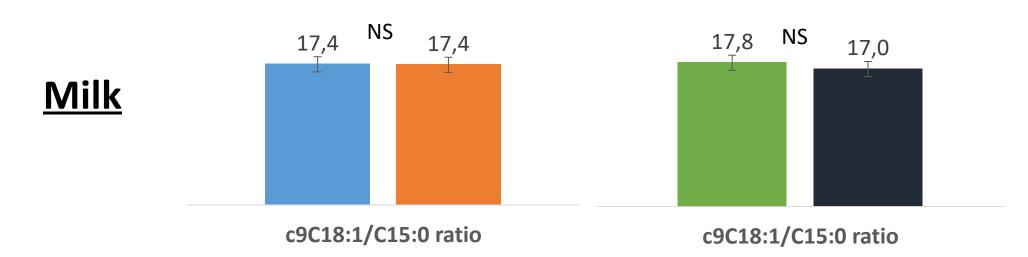
SCD: Stearoyl-CoA Desaturase

Colostrum FA according to origin

	Diet		В	reed		P-value	
(g/100 g FA)	100%	60%	Parda	Pirenaica	SE	Diet	Breed
De novo (C4:0 to C15:0)	21,31	17,73	17,66	21,37	0,41	***	***
Mixed origin (C16:0+C16:1)	43,61	38,48	38,94	43,15	0,68	***	***
Mobilization (≥C17:0)	35,08	43,79	43,39	35,48	0,96	***	***


- ✓ Nutrient-restricted cows decreased *de novo* and mixed origin FA but increased mobilized FA in colostrum.
- ✓ Again, Parda de Montaña breed had a similar response to nutrient-restricted cows, independently of feeding level.

Milk FA according to origin


	Diet		В	reed		P-value	
(g/100 g FA)	100%	60%	Parda	Pirenaica	SE	Diet	Breed
De novo (C4:0 to C15:0)	25,84	26,52	26,10	26,26	0,43	NS	NS
Mixed origin (C16:0+C16:1)	30,58	30,65	29,75	31,48	0,36	NS	***
Mobilization (≥C17:0)	43,58	42,83	44,14	42,26	0,68	NS	*

- **✓** Prepartum nutrient restriction did not affect the milk FA origin at week 3 post-partum.
- ✓ Both breeds showed similar de novo FA content, but Parda de Montaña had lower of mixed origin and higher mobilized FA in milk than Pirenaica cattle.

Metabolic status indicator ratio

Undernutrition and breed led to metabolic challenge around calving but they subsequently recovered

Conclusions

- Beef cow undernutrition (last trimester of pregnancy) did not affect colostrum and milk total FA, but boosted beneficial MUFA, rumenic acid and PUFA n-3 at the expense of SFA content. Milk FA differences were nearly vanished with the post-partum refeeding strategy.
- Parda de Montaña cattle breed incorporated more rumenic acid, MUFA, PUFA n-3 into colostrum but not in milk, compared with Pirenaica, regardless of earlier nutrient restriction.

Thank you for your attention!

javier.alvarez@udl.cat

