

The Impact of Early Thermal Manipulation on The Hepatic Energy Metabolism of Mule Duck

<u>Charlotte Andrieux¹</u>, Mireille Morisson², Vincent Coustham¹, Stéphane Panserat¹ et Marianne Houssier¹

 ¹ UPPA, INRAE UMR1419 NuMéA, 173 Route de Saint-Jean-de-Luz, 64310 Saint Pée sur Nivelle, France
 ²GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France

charlotte.andrieux9@gmail.com

Winner of the AFZ thesis prize 2022

UMR NuMéA, FRANCE Co-directors Marianne Houssier Stéphane Panserat

The *foie gras* production

Mule duck : the main species for the foie gras production

(Davail et al., 2003; Baéza et al., 2005)

The *foie gras* production

Incubation step : first step of rearing Incubation -Eggs were incubated during 30 days (4 weeks) **Control conditions** Temperature 37.6 °C **Relative humidity** 60 to 65 % Egg rotation 90° every 3h gas exchanges ventilation on Incubator at the experimental station

(Barott, 1937; Landaeur, 1961; El-Hanoun et al., 2012; Abd El-Hack et al., 2019)

The *foie gras* production

Segmentation of the rearing period of mule duck

Incubation -

Eggs were incubated during 30 days (4 weeks)

Force-feeding

Mix of corn flour, water and vitamins distributed **twice a day** and during almost **2 weeks** (12 days)

Beginning of rearing

Rearing in a closed builling with a starter diet during **4 weeks**

Rearing

Growing diet and outside access during **4 weeks**

Force-feeding preparation

Hourly rationed (**1h/day** of feeder opening) with the growing diet and outside access during **4 weeks**

Early thermal programming

Programming: impact of early environmental stimulus on the futur phenotype

What are the consequences of a thermal manipulation at different stages in a duck's life ?

A **Thermal Manipulation** is a change in temperature occuring during the embryogenesis

(Tarry-Adkins and Ozanne, 2011; Vaiserman, 2018) (Archer et al., 2009; Haron, 2021; Andrieux et al., 2022)

Goal of the study

Evaluation of the impacts of the thermal manipulation throughtout the mule duck life

E : Embryonic day; D : day of life; TM : Thermal manipulation

Direct impact of the TM

TM ducks showed direct changes in the relative expression of genes involved in energy metabolism

<u>TM :</u> + 1°C, started à E13 <u>AGE :</u> E13 (Incubation period) <u>CONDITION :</u> 1h after the increase of temperature

- Change in the relative expression of genes involved in energy metabolism pathways, as lipid or carbohydrate metabolisms (8 genes out of 78)
- ALDH7A2 : actor of lipid oxidation (production of energy from lipids)
- GLUT1 : transporter of glucose in tissue (entrance of glucose in the liver)

Impacts on the hepatic metabolic response

The TM led to greater hepatocyte expansion and to altered energy storage after a meal

<u>TM :</u> + 1°C, E13-E27 16h/24 <u>AGE :</u> D78 (End of the force-feeding preparation period) <u>CONDITION :</u> 4h after a meal, after a fasting of 23h

- Expansion of hepatocytes 4h after the refeeding
- Expansion bigger for TM ducks (+ 1μm²)
- Change in liver lipid composition (+ 4% of saturated fatty acids 4h after the meal in TM group)
- Change in the relative expression of metabolic genes involved in lipid or carbohydrate metabolisms (8 genes out of 80)

(Andrieux et al., 2023 in American Journal of Physiology)

TM : Thermal manipulation

Impact on the *foie gras* production

TM ducks presented higher liver weight and a change in energy metabolism response

	Control	Thermal manipulation	
Body weight(g)	5917 ± 357	5842 ± 322	
Liver weight (g)	601ª ± 100	653 ^b ± 111	
HSI	10.2ª ± 1.7	11.2 ^b ± 1.8	
Melting rate (%)	19.0 ± 12.3	21.9 ± 12.3	
Total lipids in liver (%)	60.9 ± 4.8	67.2 ± 5.6	
Number of ducks	36	58	

<u>TM :</u> + 1.7°C, E11-E21 16h/24 <u>AGE :</u> D88 (End of the force-feeding period) <u>CONDITION :</u> 2 and 10h after the last meal of force-feeding

- **Higher liver weight** for TM ducks after force-feeding (10h after the last meal)
- Change in liver lipid composition (10h after the last meal)
- Increase of relative expression of genes involved in lipid metabolism (2h after the last meal)

(Andrieux et al., 2023 in Frontiers in Physiology)

Conclusion

What are the consequences of a thermal manipulation at different stages in a duck's life ?

Incubation

Direct impacts of the TM on relative expression of **genes involved in lipid and carbohydrate metabolisms**

(Andrieux et al., in preparation)

Force-feeding

Impacts on liver weight, liver lipid composition and relative expression of genes involved in lipid and carbohydrate metabolisms

(Andrieux et al.,2021; 2023 in Frontiers in Physiology)

At hatch and D6

Impacts on weight at hatch and internal temperature at D6

(Andrieux et al., 2022 in Animal)

Force-feeding preparation

Impacts on liver composition, size of hepatocytes andrelative expressions of genes involved in lipid andcarbohydrate metabolisms(Andrieux et al., 2023 in American Journal of Physiology)

Prospects

New prospects to improve the foie gras production field

- By combining techniques that have already been optimised with thermal manipulaion, we could move towards
 optimising the duration of force-feeding and/or alternatives to force-feeding (spontaneous fattening).
- Tool to improve **resistance to diseases** or to **heat stress** (ex: in broilers)

Aknowledgements

ASSOCIATION FRANÇAISE DE ZOOTECHNIE

French association for animal production

Funding support : Winner of the AFZ thesis prize 2022

Le marsan

Thank you for your attention