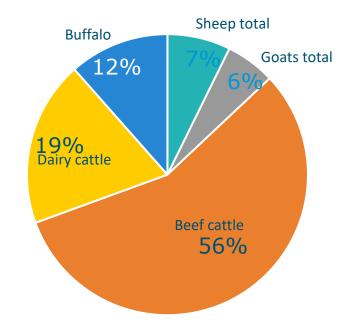
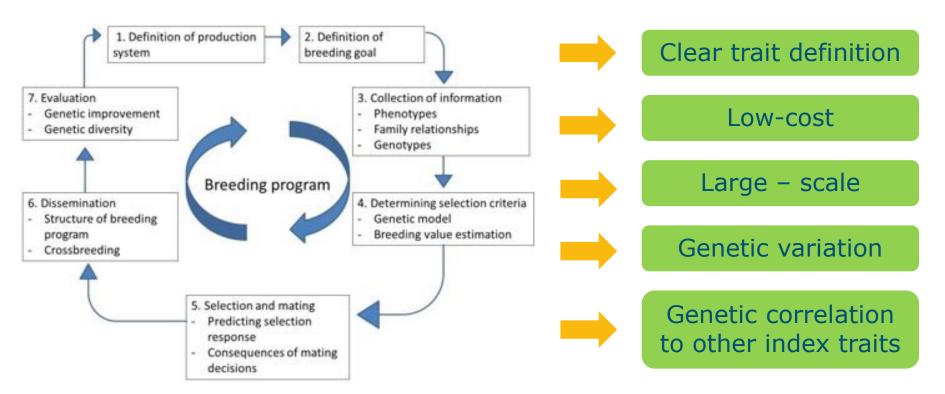
Global Methane Genetics: a global program to accelerate genetic

progress for reduced methane emission

Birgit Gredler-Grandl, C.I.V. Manzanilla-Pech, R. Banks, H. Montgomery, R.F. Veerkamp


2021 FAO Livestock e-Methane (kt)

Tier 1 emissions


Total enteric methane emissions from **5 major livestock species** was 97,384 (kt) in 2021.

Species	E-Methane Emissions (kt)
Beef cattle	54,973
Dairy cattle	18,550
Buffalo	11,217
Sheep	7,088
Goats	5,556

Animal Breeding as mitigation tool

Recording techniques

Recording techniques

Trait definitions

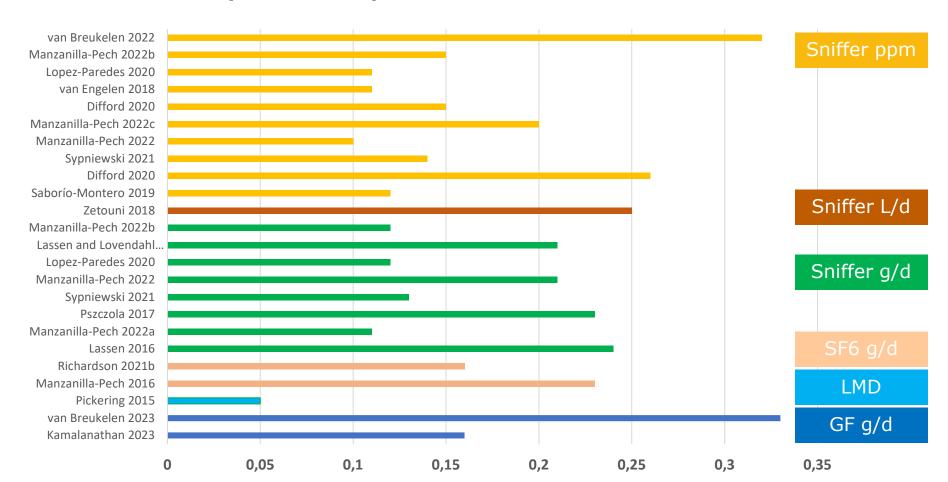
Methane production

g/day Easy to understand Climate targets

Methane intensity

CH4 per unit of output Ratio trait Industry reporting

Methane yield


CH4 per unit of input Ratio trait Industry reporting

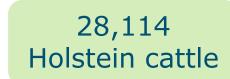
Residual methane

Expected vs observed Difficult to interpret

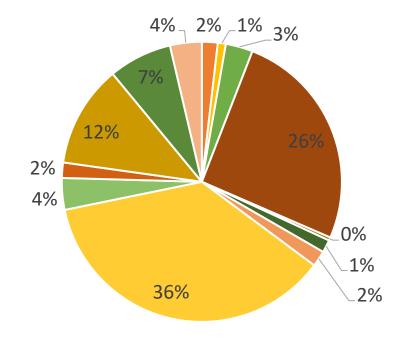
Heritability in dairy cattle

Genetic correlations between CH₄ and other traits

	Breed	CH4 trait	MKG	DMI	BW
Bakke et al. 2024	Norwegian Red	GF g/d	-	0.29 (0.05)	0.50 (0.09)
Lopes et al. 2023	HOL	GF g/d	0.33 (0.12)	0.83	0.68 (0.10)
Gonzalez-Recio, 2024	HOL	ppm	-0.05	0.27	-
Van Breukelen et. al. 2024	HOL	ppm	0.03 (0.06)	0.09 (0.10)	0.06 (0.06)



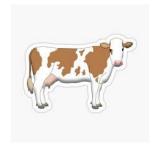
Session 1: N. Gengler, F. Tiezzi


Session 30: Anouk van Breukelen, Karoline Bakke

Number of CH₄ phenotyped - Holstein cattle

Number of CH₄ phenotyped cattle – Jersey and Nordic Red breeds

11,250 Jersey, Red Dairy, Finnish Red, Norwegian Red

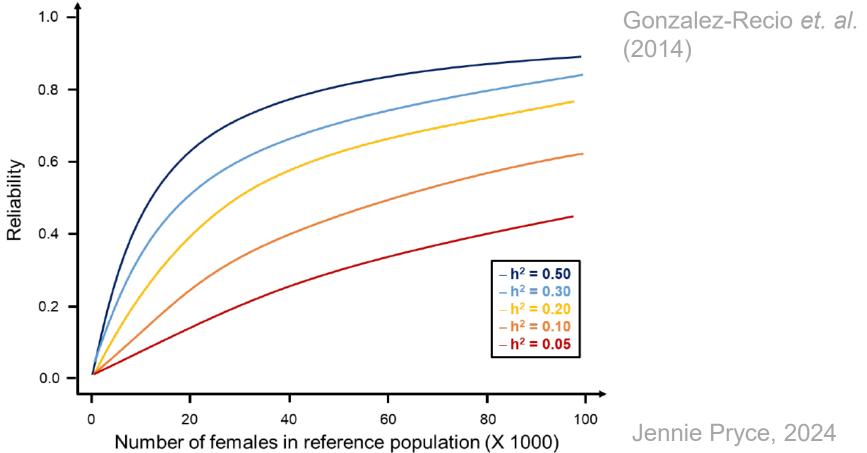

Jersey Denmark

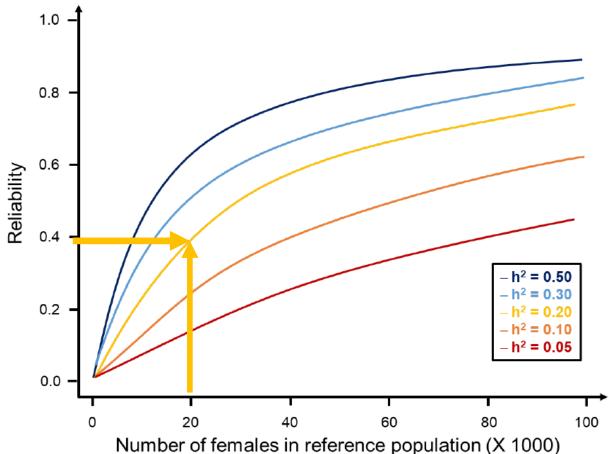
■ Red Dairy Denmark

■ Crossbred Denmark ■ Finnish Red Finland ■ Norwegian Red

Number of CH₄ phenotyped cattle – Fleckvieh and Brown Swiss


1,000 Fleckvieh and 200
Brown Swiss cows with
GreenFeed


1,500 Brown Swiss cows with sniffers


CH₄COW

How many cows with phenotypes do we need?

How many cows with phenotypes do we need?

Gonzalez-Recio et. al. (2014)

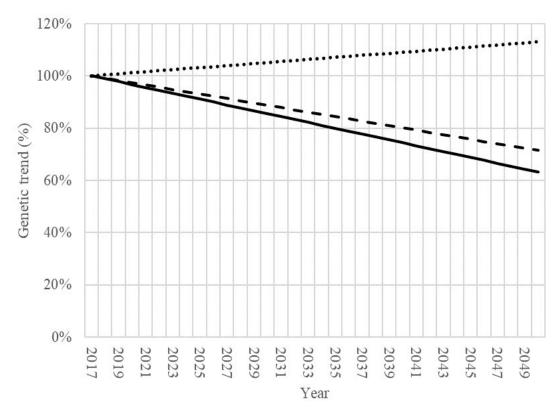
Jennie Pryce, 2024

International across-country collaboration needed

Net Zero Dairy Genome Project

NDGP -> 20,000 CH₄ cows

> 20,000 CH₄ cows


EAAP session 1: Coralia Manzanilla-Pech

Are we ready for implementation?

- Indirect selection: We have already been doing it!
 - e.g. Carbon sub index (ICBF), Sustainability index (AUS)
- Published breeding values for lower methane emission
 - CAN & ESP (2023)
 - NLD, DK, NO (and others?) 2025
- Direct selection: sustainable balanced breeding goals:
 - Production
 - Health, fitness, welfare
 - Environment

Impact of genetic selection – genetic progress

- Selection index calculations for Dutch NVI
- Goal: methane production g/d (GF trait and sniffer trait, rg 0.76)
- Desired gain: -12.75 CH4 trait
- Desired gains
 All weight on methane

 Current trend

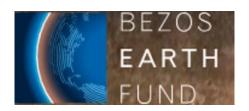
PhD thesis Anouk van Breukelen, 2024

Challenges and needs

Large reference populations

International harmonisation & standardisation in trait definition

Breeding indices


Adoption of genetics as mitigation tool:

- Farmers
- Dairy industry
- Stakeholder & policy maker
- Incentive systems

Global Methane Genetics (GMG)

Accelerating Genetic Progress to reduce methane in ruminants

Coordinator: Roel Veerkamp & Birgit Gredler-Grandl Program for 5 years Budget: US\$ 20-30 million

Close collaboration with Global Methane Hub

Why? How? What?

- Genetic progress can make a permanent and impressive contribution to reducing methane output from livestock systems globally
- we aim to accelerate genetic progress and to implement breeding strategies for reduced methane emissions in Ruminants in the global North and South
- To support
 - sharing of protocols and data,
 - to expand phenotyping, breeding program design
 - genetic evaluations
 - development of Global Livestock Genetics and Genomics Programs

Protocols & network building

Data & phenotyping Implementation: genetic evaluation & breeding program

1) Working Groups

WG1: Dairy global North

WG2: Small ruminants

WG3: Beef global North +

WG4: Asia

WG5: Africa

WG6: South America

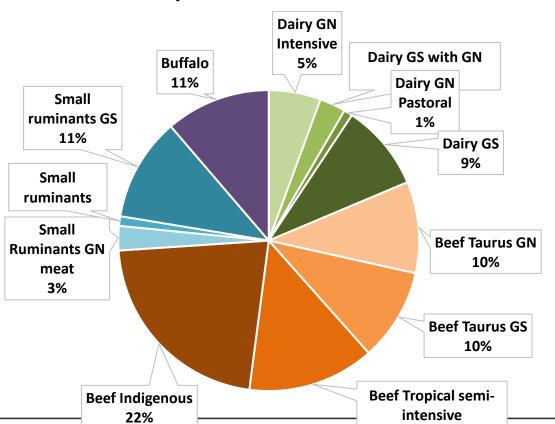
WG7: Buffalo & ruminants

Research & Phenotyping proposals

2) Database

- lega
- technical
- organisation

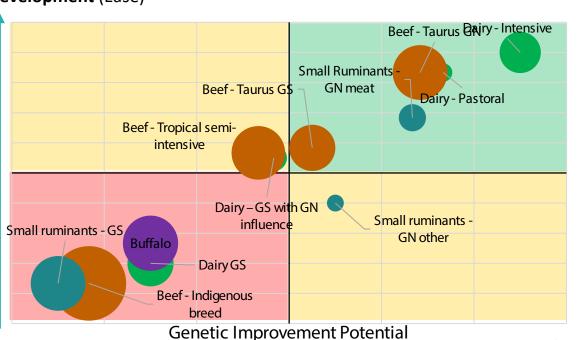
3) Animal breeding research


Investment strategy – impact analysis

		RRIDGING SCIENC		
	Cluster	Description		
1	Dairy GN Intensive	Intensive, Holstein-dominated dairy systems in GN		
2	Dairy GN Pastoral	Intensive, Holstein and crossbred pastoral dairy systems in GN		
3	Dairy GS with GN Influence	GS systems with crossbred herds influenced by GN genetics		
4	Dairy GS	GS systems incorporating a diverse range of indigenous breeds		
5	Buffalo	Buffalo (milk & meat) predominately in GS		
6	Beef Taurus GN	Intensive beef systems based on <i>Bos taurus</i> breeds in GN		
7	Beef Taurus GS	Intensive and semi intensive beef systems based on Bos taurus breeds in GS		
8	Beef Tropical semi-intensive	Bos indicus and tropical Bos taurus breeds managed in semi intensive systems in both GN and GS		
9	Beef Indigenous	GS systems incorporating a diverse range of indigenous breeds		
10	Small Ruminants GN meat	Intensive lamb and dual purpose systems in GN		
11	Small ruminants GN other	Fibre and milking small ruminant systems in GN		
12	Small ruminants GS	GS systems incorporating a diverse range of indigenous breeds		

Comparison of e-Methane per group

Livestock Segment	Enteric methane Emissions (kt)
Dairy GN Intensive	5,565
Dairy GN Pastoral	928
Dairy GS with GN Influence	2,783
Dairy GS	9,275
Beef Taurus GN	9,776
Beef Taurus GS	9,888
Beef Tropical semi-intensive	13,548
Beef Indigenous	21,761
Small Ruminants GN meat	2,604
Small ruminants GN other	1,027
Small ruminants GS	11,056
Buffalo	11,217



Impact – Ease Matrix

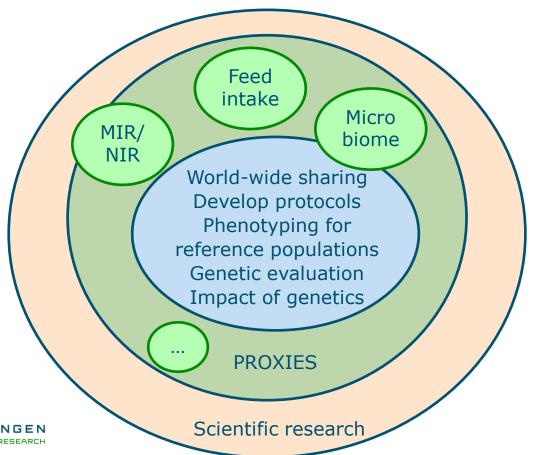
Genetic improvement potential (Impact) versus **Opportunity for trait development** (Ease)

Impact Criteria

- Structure, alignment and coordination of genetic improvement sector
- Scale of addressable market
- Potential rate of genetic gain

Ease Criteria

- Industry complexity for methane trait development
- Access to infrastructure, research capability and resources
- Capacity to measure and incentivise emission reductions



Opportunity for Methane Trait Development & Incentivisation

Investment of Global Methane Genetics

Invest money in the inner circle

Facilitate networks linking with the two outer circles.

Focus of GMG – acceleration of genetic progress

Dairy program:

Holstein (~40k)
Jersey (~8k)
(Nordic) Red Breeds
Brown Swiss

Beef:

North America (~6000) Australia, Ireland, UK, NZ (~18.5k)

South America

Beef & indigenous (~7k)

Africa

Dairy & beef

India

World-wide sharing
Develop protocols
Phenotyping for
reference populations
Genetic evaluation
Impact of genetics

Microbiome:

Global reference population (~9.5k)

Sheep: global reference population

Australia & New Zealand
UK & Ireland
Uruguay (~ 17k)

Focus of GMG – acceleration of genetic progress

Dairy program:

South America

Africa

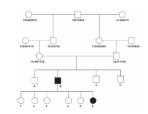
Asia/India

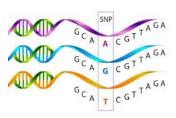
Session 55: The holobiont concept Tuesday, 9am

- → David Flossdorf
- → Renzo Bonifazi
- → Oscar Gonzalez-Recio
 - → Goutam Sahana

Microbiome:

Global reference population




GMG - Database

- Business requirement phase collaboration ICAR, DataGene,
 Interbull, Lactanet, and others
- Methane phenotypes (any method), pedigree, genotypes
- Fair share policy free riders!
- Cow equivalents established by the effective number of records (reliability) in genetic evaluation
- Requirement for all data paid by GMG background data welcome
- ...

Workshops – content driven task force - webinars

- ICAR Feed&Gas working group → icar.org
- Genetic progress in farm- and national credit analysis
- Webinar for policy makers about impact genetic progress
- Recording pasture based systems
- SOP sniffer/GreenFeed -> re-visit
- SOP portable accumulation chambers
- Recording methane emission in small ruminants
- Microbiome platform/network global collaboration
- ...

Workshops – content driven task force - webinars

■ ICAR Feed&Gas → icar.org Ger Mailing list coming soon! We Re Contact us: SO SO Roel.Veerkamp@wur.nl Re Birgit.gredler-grandl@wur.nl Mic

- Animal breeding is one of the important mitigation tools
- Cumulative and permanent
- Large reductions are possible
- Support farmers in reducing the environmental footprint of their farm with effective mitigation tools

Announcements

Hybrid course February 2025:

Re-Breeding for lower methane emissions: from farm measurement to genetic progress

Follow updates: re-livestock.eu

Announcements

Join mailing list! Abstract submission opens soon!

https://ggaaconference.org/

Acknowledgements

Andy Jarvis

Hayden Montgomery Rob Banks

ICAR Feed&Gas working group and collaborators

ICAR Feed&Gas

Christine Baes, Lorenzo Benzoni,
Maria Frizzarin, Karoline Bakke,
Raffaella Finocchiaro, Rasmus Bak
Stephansen, Jan Lassen, Caeli Richardson,
Jennie Pryce, Nina Krattenmacher

Donagh Berry Pauline Martin

Mike Coffey Kathrin Stock

Beat Bapst Marcin Pszczola

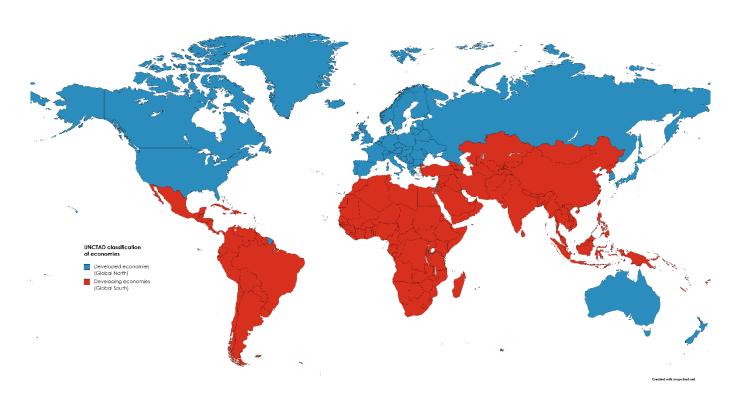
Amelie Vanlierde Suzanne Rowe

Nicolas Gengler Loran McNaughton

Enyew Negussie

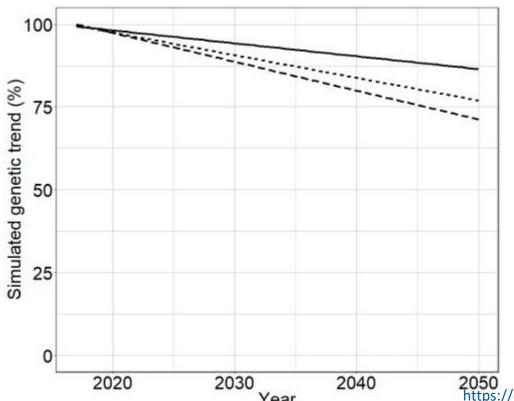
Christa Egger-Danner

Franciso Penagaricano


Oscar Gonzalez-Recio

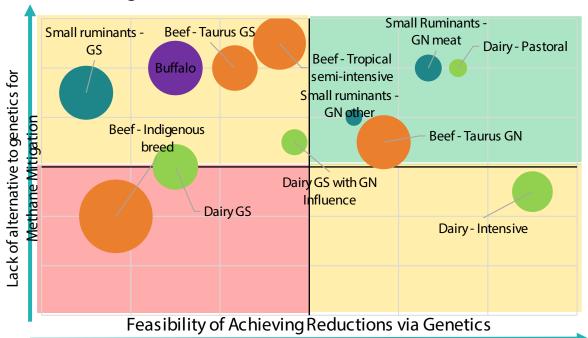
Filippo Miglior

Genetic correlation Dutch NVI – CH4conc


Trait	rg	Trait	rg
NVI	0.08	Direct calving ease (pnt)	0.19
	0.00	Direct curving case (pine)	0.25
Milk yield (kg)	-0.11	Maternal calving ease (pnt)	0.07
		Interval calving-first	
Fat yield (kg)	-0.08	insemination (pnt)	0.23
		Interval first-last insemination	
Protein yield (kg)	-0.04	(pnt)	0.21
Lactose yield (kg)	-0.18	Conception rate (pnt)	0.14
INET*	-0.07	Conception rate heifers (pnt)	0.30
		' '	
Longevity (days)	-0.01	Udder health (pnt)	0.06
Functional longevity (days)	-0.01	Claw health (pnt)	0.23
Functional longevity (days)	-0.01	Claw Health (pht)	0.23
Udder (pnt)	-0.09	Survival (pnt)	-0.22
		Saved feed cost for	
Feet & legs (pnt)	-0.06	maintenance (euro)	0.21

Scope

Impact of genetic selection



- Methane intensity (g/kg milk)
- Current trend
- Combined selection for CH4 and other traits
- Theoretical maximum (exclusively focusing on methane)

https://doi.org/10.1016/j.animal.2021.100294 (de Haas et al. 2021)

Feasibility - Alternative Matrix

Feasibility of achieving methane reductions (via genetics) versus Lack of alternative to genetics for methane reductions

Feasibility Criteria

- Structure, alignment and coordination of genetic improvement sector
- Scale of addressable market
- Potential rate of genetic gain
- Industry complexity for methane trait development
- Access to infrastructure, research capability and resources
- Capacity to measure and incentivise emission reductions

Lack of Alternative Criteria

- Applicability of other interventions
- Management opportunities

