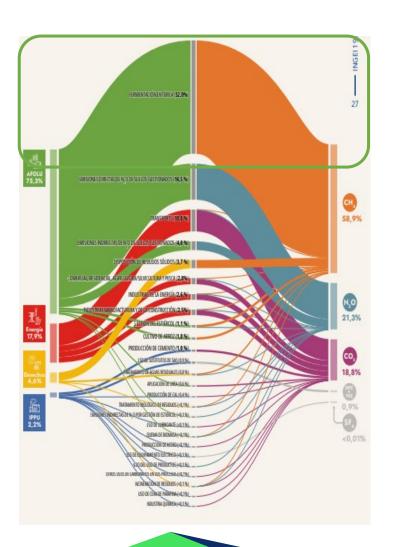
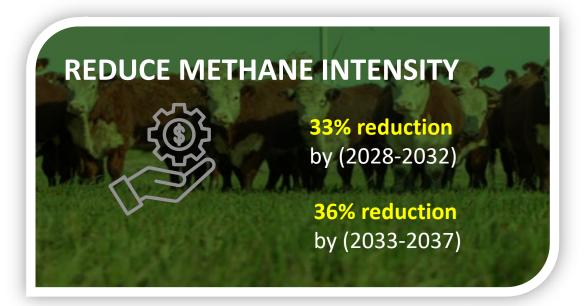


Uruguay: Greenhouse gas emissions


Methane is 59% of the total GHG emitted
 (52% only originated by enteric fermentation)


^{*1} INGEI - https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/inventarios-nacionales-gases-efecto-invernadero-ingei

^{*2} Gaston Berheim – Expo Prado 2022

Uruguay: Greenhouse gas emissions

- Methane is 59% of the total GHG emitted (52% only originated by enteric fermentation)
- Uruguay is focused on gas intensity mitigation strategies on livestock farming

Hypothesis/Objective

Selection for feed efficiency could improve methane intensity without compromising performance

Explore the associations between feed efficiency and:

Performance Traits:

Feed Intake (FI)
Average Daily Gain (ADG)
Metabolic weight (mMW)
Residual feed intake (RFI)

Methane Traits:

Methane Emissions (CH4) Methane Intensity (MeI) Methane Yield (MeY)

Material & Methods

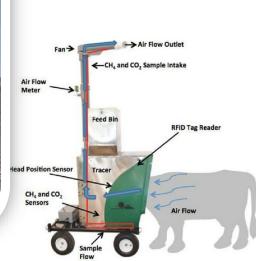
Efficiency and Methane Emissions Measurements

GrowSafe Feed Intake Systems (Vytelle, Calgary, Canada)

- Feed and water ad libitum during trial
- Finishing diet (before slaughter)

RFI = Actual Intake - Expected Intake

Metabolic Weight (mMW)
Average Daily Gain (ADG)
Subcutaneous Fat Thickness (Bfat)


Dry Matter Intake = test + ADG + mMW + Bfat + e

GreenFeed Short Visit Feeder Stations C-Lock Inc. Rapid City, South Dakota, USA)

- Record CH₄ in the animal's production environment
- Set-up: Max 5 drops (35g) every 3hs, 8 times/day (24hs)
- QC: Valid visits > 2.5 minutes | > 30 visits

(Arthur et al,.2017)

(Basarab et al., 2003; Koch et al., 1963)

Material & Methods

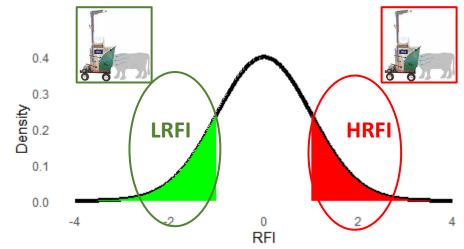
Efficiency and Methane Emissions Measurements

Adaptation/Training period 15 days

Evaluation period 70 days

Simultaneos measures: Intake (RFI)/Weight/CH₄measures

• Years: 2022/2023


140 Hereford steers

Age: 548 ± 26 days

InitialBW: 450 ± 32 (kg)

FinalBW: $554 \pm 37 \, (kg)$

GF Pellet and GrowSafe TMR: Similar in E (Sum DMI)

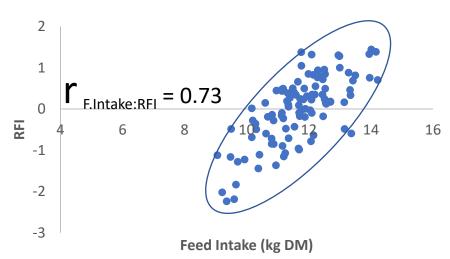
Recruitment for GF was ~ 70%

To evaluate performance and methane traits on animals we

Y = Year + RFI Group + Year * RFI Group

Results & Discussion

Performance Traits on classified animals based on feed efficiency (RFI)


N = 90	FEED EFFICIEN		
Performance Trait	Low Efficiency (HRFI)	High Efficiency (LRFI)	Significance
Feed Intake (kg DM/d)	12.51 ± 0.12 a	10.61 ± 0.12 c	***
ADG (kg/d)	1.48 ± 0.03	1.46 ± 0.03	ns
Metabolic weight (kg)	107.23 ± 0.78	105.54 ± 0.77	ns
Fat Thickness (mm)	11.85 ± 0.36	12.02 ± 0.36	ns
RFI (kg/d)	0.831 ± 0.06 a	-0.927 ± 0.06 c	***

Tukey-Kramer multiple comparison test for significance.

Animal classification into efficiency groups:

- Significant difference in feed intake
- Highly efficient animals ate 17% less than low-efficiency steers
- Non-significant differences for performance traits

Correlation between Feed Intake and RFI

^{***} p value<0.001, ** p value<0.01, * p value<0.05, ns: non significative

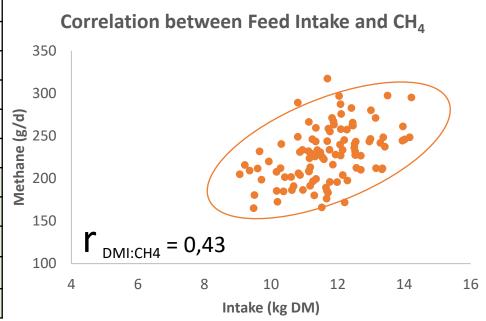
Results & Discussion

Performance Traits on classified animals based on feed efficiency (RFI) & methane records

n = 67	FEED EFFICIE		
Performance Trait	Low Efficiency (HRFI)	High Efficiency (LRFI)	Significance Efficiency class
Feed Intake (kg DM/d)	12.58 ± 0.14 a	10.59 ± 0.14 b	***
ADG (kg/d)	1.51 ± 0.03 1.46 ± 0.03		ns
Metabolic weight (kg)	12.58 ± 0.14	10.59 ± 0.14	ns
Fat Thickness (mm)	11.73 ± 0.38	12.16 ± 0.38	ns
Efficiency - RFI (kg/d)	0.816 ± 0.08 a	-0.980 ± 0.07 b	***

Tukey-Kramer multiple comparison test for significance.

- Feed Efficiency groups presented significative differences on Intake and RFI as observed in the total population.
- High Efficiency -> intake ~ 15%



^{***} p value<0.001, ** p value<0.01, * p value<0.05, ns: non significative

Results & Discussion

Performance Traits on classified animals based on feed efficiency (RFI) & methane records

n = 67	FEED EFFICI		
Performance Trait	Low Efficiency	High Efficiency	Significance Efficiency
	(HRFI)	(LRFI)	class
Feed Intake (kg DM/d)	12.58 ± 0.14 a	10.59 ± 0.14 b	***
ADG (kg/d)	1.51 ± 0.03	1.46 ± 0.03	ns
Metabolic weight (kg)	12.58 ± 0.14	10.59 ± 0.14	ns
Fat Thickness (mm)	11.73 ± 0.38	12.16 ± 0.38	ns
Efficiency - RFI (kg/d)	0.816 ± 0.08 a	-0.980 ± 0.07 b	***
Animals w/CH4	33	34	
Methane (g/d)	235.95 ± 4.94 a	214.98 ± 4.99 b	**
CH ₄ Intensity (g/kgBW)	0.457 ± 0.01 a	0.427 ± 0.01 b	*
CH ₄ Intensity (g/kg/d)	156.12 ± 4.13	147.9 ± 4.17	ns
CH ₄ Yield (g/kgDM)	18.74 ± 0.42 b	20.38 ± 0.42 a	**

Tukey-Kramer multiple comparison test for significance.

Highly efficiency animals presented:

- Lower intake (kgDM) ~ 15%
 - Lower gross methane emissions (g/d) ~ 8%
 - Lower Methane Intensities (g/ Kg) ~ 7%
 - Higher Methane Yields (g/ Kg DM) ~ 8%

^{***} p value<0.001, ** p value<0.01, * p value<0.05, ns: non significative

Conclusions

The potential for selection of animals with higher feed conversion efficiency:

Reduce feed intake (without compromising performance) in line with of production

goals

Daily gross methane emission reduction (directly linked to intake)

 Lower emission intensities as a sustainable goal to reduce the impact of global warming

....ongoing projects to unravel these relationships with the microbiota diversity

