

Relationships between Methane Emissions and Milk Production Traits: An Unfinished Story

Nicolas Gengler, Hadi Atashi

University of Liège - GxABT, Animal Sciences

Gembloux, Belgium

Introduction

- ► Important:
 - ► Reducing methane emissions in dairy cattle (environmental concerns)
 - + efficiency ← concern of producers
- ► However:
 - ▶ Relationship between methane emissions and milk production traits?
- ► Aim of this presentation:
 - Explore associations between milk production traits and methane emissions

Background

- Methane:
 - ► A potent greenhouse gas contributing to global warming
- ▶ Dairy Sector:
 - ► A significant source of methane emissions
- Previous Studies:
 - Mixed results on the relationship between milk traits and methane emissions

Objectives of This Presentation

- ► Give a fast overview of current knowledge
 - + mathematical derivations

- Investigate genetic and phenotypic correlations between methane emissions and milk production traits in our Walloon population
- Assess potential trade-offs between reducing methane emissions and maintaining milk production

Key Terms and Definitions

- ► Milk Production Traits:
 - ► MY = (daily) milk yield
 - ► FP = (daily) fat percentage FY = (daily) fat yield
 - ► PP = (daily) protein percentage PY = (daily) protein yield
- Methane Emission Traits:
 - ► ME = (daily) methane emissions
 - ► MI = (daily) methane intensity = ME / unit of output ← mostly MY
 - Often replaced by ln(MI) hereafter called LMI (logarithm monotonic increasing)
 - ► MD = (daily) methane yield = ME / unit of input ← mostly DMI

What to Expect for Methane Emissions (ME)?

Theory:

 $MY \nearrow DMI \nearrow ME \nearrow$

- But:
 - ► Even if higher feed intake → greater total methane emissions?
 - Complex situation as outlined in ICAR Guidelines https://www.icar.org/Guidelines/22-Appendix-2-Prediction-equations-for-feed%20intake-feed-efficiency-and-methane-for-dairy-cattle.pdf
- Alternative idea:

Appendix 2 of Section 22 of the ICAR **Guidelines - Prediction equations for feed** intake, feed efficiency and methane for dairy cattle

What to Expect for Methane Intensity (MI)?

- Ratio trait MI = ME / MY
 - Variation to MY on numerator or denominator?
 - A possibility to have a clearer view by defining derivative in function of MY:

$$\frac{d(MI)}{d(MY)} = \frac{1}{MY} \times \frac{d(ME)}{d(MY)} - \frac{ME}{MY^2}$$

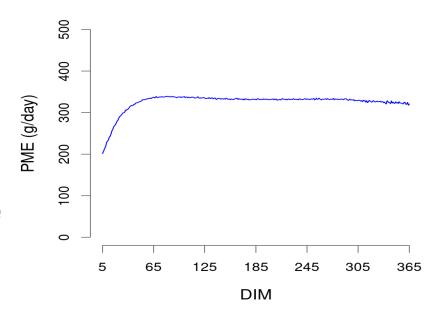
► Consequence:

MI / with ME / when MY / only if $\frac{1}{MY} \times \frac{d(ME)}{d(MY)} > \frac{ME}{MY^2}$

► NB: clear why geneticists do not like MI (or Ln(MI) = LMI)

$$\frac{d(LMI)}{d(MY)} = \frac{1}{ME} \times \frac{d(ME)}{d(MY)} - \frac{1}{MY}$$

Milk Yield or Milk Energy?



- ► Milk energy output → total energy content (reflecting fat, protein + lactose)
- ► Why milk energy output?
 - ► Methane produced during the digestion process (enteric fermentation)
 - Closely tied to how cows convert feed into energy
- By focusing on the energy content
 - better understanding of efficiency of feed utilization (+ relation to ME)

Lactation Stage?

- Well know ME shows
 - → rather typical lactation curve

Reasons

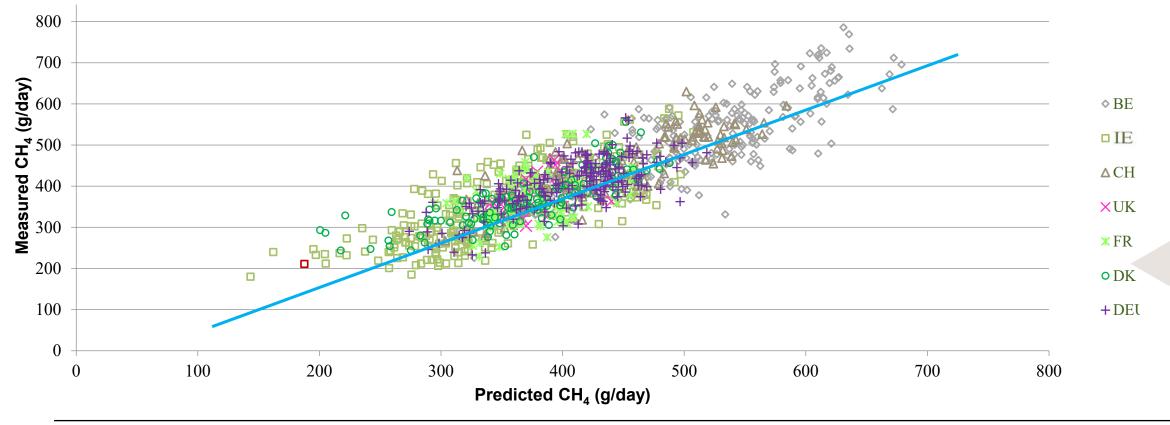
- Variation in feed intake + negative energy balance
- Changes in feed (feeding adjusted to lactation stage)
- Changes in rumen microbial activity (in general)
- Hypothesis
 - ► As milk production level (and composition) changing
 - correlations between MY and ME not constant

Different Methods $CH_4 \rightarrow$ \neq Correlations?

Table 1. Summary of the main features of methods for measuring methane output by individual animals ¹.

Method	Purchase Cost ²	Running Costs ²	Labour ²	Repeatability	Behaviour Alteration ³	Throughput
Respiration chamber	High	High	High	High	High	Low
SF ₆ technique	Medium	High	High	Medium	Medium	Medium
Breath sampling during milking and feeding	Low ⁴	Low	Low	Medium	None	High
GreenFeed	Medium	Medium	Low	Medium	Low	Medium
Laser methane detector	Low	Low	High	Low	Low-Medium	Medium

¹ Consensus views based on experiences of METHAGENE WG2 members. ² Per measuring unit or group of animals.


³ Compared to no methane recording: low = measuring in situ; medium = some handling, training or change in routine; high = confinement. ⁴ Medium if using FTIR analyser.

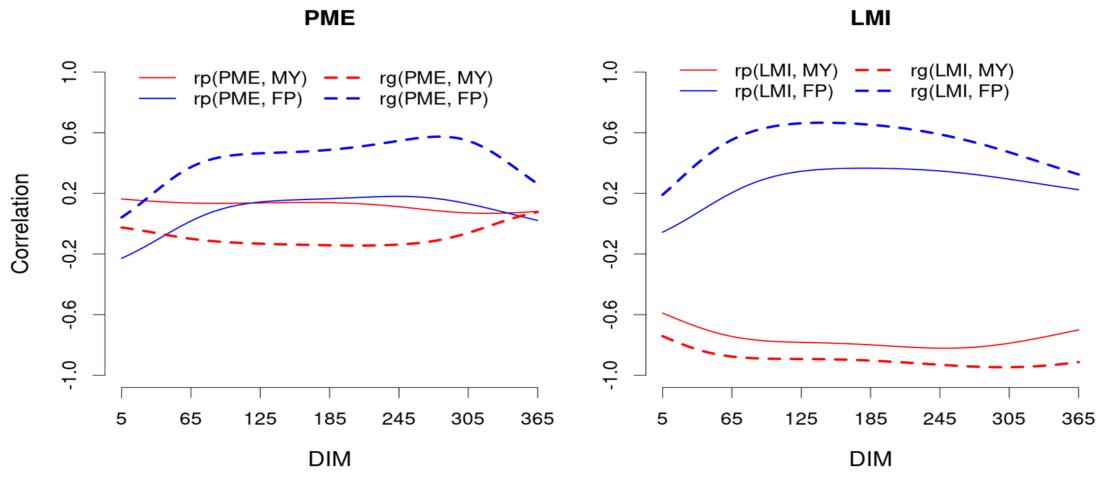
MIR-Based Equation (Used in This Study)

	CH ₄ Ref. method	n data	n cows	Origin	R ² c	SEC (g/d)	R ² cv	SECV (g/d)
FLOKEN	SF ₆ & RC	1,089	299	BE, IE, CH, UK, FR, DK, DE	0.73	53	0.68	57

Material & Methods

- ► Test-day records from routine milk recording collected between 2007 to 2021 in 1,530 Walloon herds
 - ▶ 1,529,282 records on 229,465 1st parity cows
 - ▶ 1,062,013 records on 151726 2nd parity cows
 - ► 642,735 records on 90484 3rd parity cows
- \blacktriangleright MY, FY, PY, FP, PP + MIRbased CH₄ data (PME and In(PME/MY) = LMI)
- ► Random regression test-day ssGBLUP models
 - Genetic parameters estimated through Gibbs sampling
 - ► Genomic data available for 7,375 animals (1,798 males)

Results Averaged accross the 3 Lactations


Phenotypic and genetic correlation for PME and LMI

		MY	FY	PY	FP	PP
PME	Phenotypic	0.12	0.16	0.11	0.09	0.01
PME	Genetic	-0.09	0.32	0.05	0.44	0.28
LMI	Phenotypic	-0.77	-0.56	-0.72	0.28	0.29
LMI	Genetic	-0.90	-0.37	-0.73	0.54	0.55

- Results similar to Kandel et al. 2017 (https://doi.org/10.3168/jds.2016-11954)
 - Using similar data but much smaller dataset!

Results Averaged for DIM

Results & Discussion

Phenotypic and genetic correlation for PME and LMI

		MY	FY	PY	FP	PP
PME	Phenotypic	0.12	0.16	0.11	0.09	0.01
PME	Genetic	-0.09	0.32	0.05	0.44	0.28

Results also similar to Van Dormaal et al. 2023 (https://journal.interbull.org/index.php/ib/article/view/1906/1881

► Genetic: -0.13, 0.38 and -0.11 with MY, FY, PY

► Phenotypic: -0.06, -0.18 and 0.01 with MY, FY, PY

Using also MIR-based equation (but a complete different one....) but only a window of DIM

Results & Discussion

Phenotypic and genetic correlation for PME and LMI

		MY	FY	PY	FP	PP
PME	Phenotypic	0.12	0.16	0.11	0.09	0.01
PME	Genetic	-0.09	0.32	0.05	0.44	0.28

▶ Results sightly different when CH₄ obtained using sniffers,
e.g., Pszczola et al. (2019) (https://doi.org/10.3168/jds.2018-16066)

Genetic correlations for Holsteins (n = 483):
MY (0.15), FY (0.21), PY (0.07), FP (0.04) and PP(0.07)

▶ Missing link to energy in milk (FP), rather remarkable

Discussion

- ▶ Results from genetic correlations ME vs. milk production traits followed some hypotheses:
 - Energy related
 - Lactation stage
 - Measurement systems
- ► We did not address supplementary topic → non-linear relationship i.e., correlations depend themselves on MY (FP, PP, FY or PY)
 - ► ME and especially LMI dependent on level of MY (and ME)

Conclusions

- ▶ Presentation gave only limited insight → very complex topic
 - Contributions from this whole session expected
- ▶ Detailled and comprehensive reviews necessary
- ► Imporant issue for any practical breeding use of CH₄
- ► Also if we want to define expectations of CH₄ correctly
 - → definition of CH₄ Efficency: CH₄ Expected(CH₄)

Acknowledgements

- Support of the Futurospectre partnership
 - ▶ Awé groupe Comité du Lait CRA-W ULiège-GxABT
- ► CECI Consortium for computational resources

Service Public de Wallonie

► National Fund for Scientific Research

- Support by different European Projects
- Many international partners....

Thank you for your attention

Nicolas Gengler ULiège - GxABT nicolas.gengler@uliege.be