

 Genetic parameters for methane production,
 intensity, and yield predicted from milk midinfrared spectra throughout lactation in Montbéliarde cows

Solène FRESCO, D. Boichard, S. Fritz & P. Martin


> Context

Climate change & CH4 emissions

International political commitments

Ruminants contribution to CH4 emissions

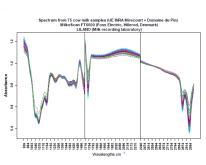
Need for tools to reduce CH4 emissions → Genetic evaluation

Direct measurements are challenging and not adapted for large-scale phenotyping

→ Prediction from milk mid infrared (MIR) spectra

> The Methabreed project

Led by Eliance and funded by APIS-GENE



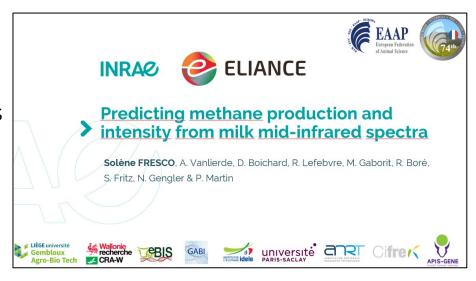
Apply the equations to the national database

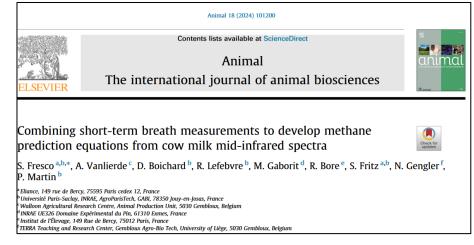
Develop methane prediction equations from milk MIR spectra and GreenFeed measurements

Develop **genetic** and genomic analyses using the predictions as phenotypes

Develop a genomic evaluation

Propose new breeding goals


> Development of the prediction equations


Development of methane prediction equations from milk MIR spectra (1,800) & direct measurements with GreenFeed devices (26,000) using the Partial Least Square method

→ Presented at EAAP 2023 and published in Animal (2024)

4 equations:

- MeP_direct in g/d
- Mel in g/kg of FPCM
- MeY in g/kg of DMI
- MeP_indirect = predicted Mel x observed FPCM in g/d

> Application of the equations

Milk recording companies

MIR spectra routinely collected from commercial farms Prediction equations

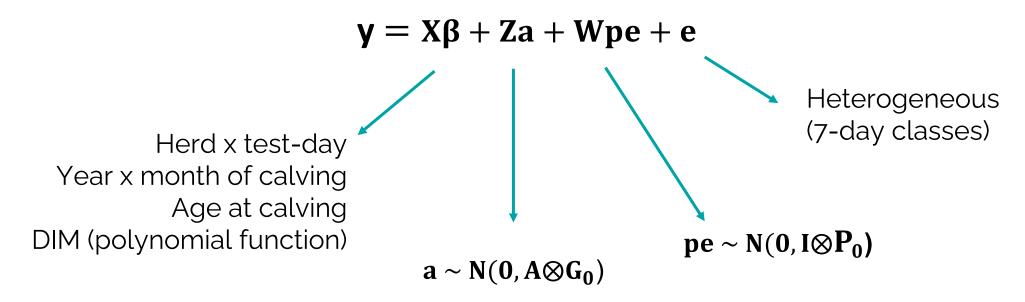
CH4 predictions

MeP direct (g/d)
Mel (g/kg of FPCM)
MeY (g/kg of DMI
MeP indirect (g/d)

Genetic analyses of CH4 traits:

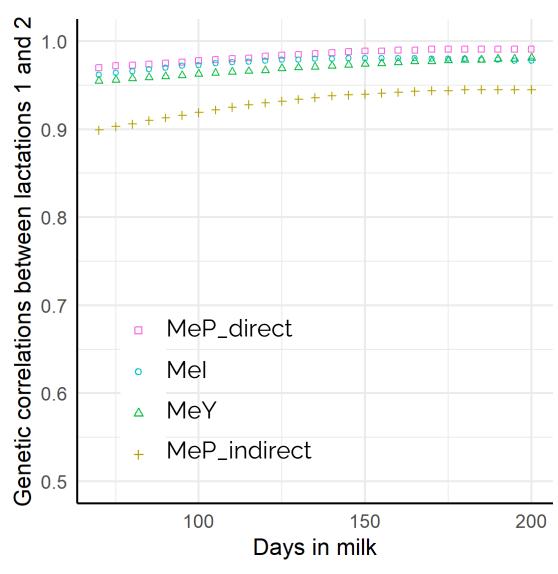
- Estimation of genetic parameters
- Single-Step Genomic evaluation
- Response to selection

608,072 MIR spectra collected between 70 and 200 DIM from 92,500 1st and 2nd parity Montbéliarde cows


Statistical description of CH₄ predictions in 1st lactation

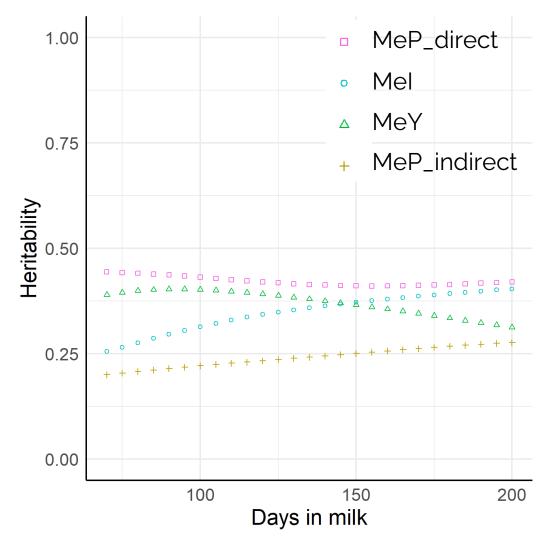
Modeling traits throughout lactation

Random regression models to account for repeated measurements (Wombat, Meyer 2007)

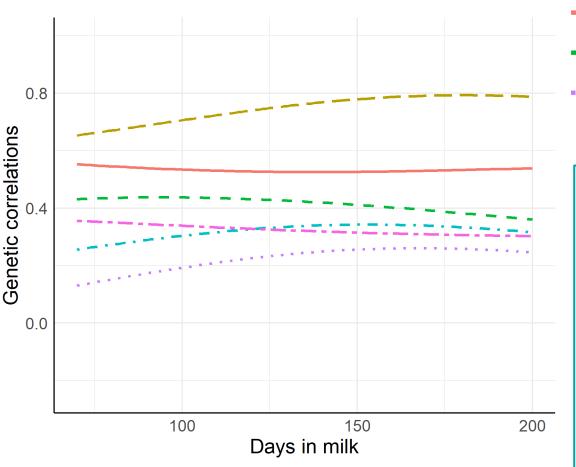


> Stability of the CH₄ traits between and within lactations

CH4 traits stable between lactations (average genetic correlations > 0,93)


→ Results in 1st lactation can be extrapolated to 2nd lactation

CH4 traits stable within lactation (average cross-correlations > 0,93)


> CH₄ traits moderately heritable

Moderate heritability estimates with averages ranging from 0.27 to 0.44 for the four CH4 traits

> Genetically different CH₄ traits

— Mel / MeP_indirect • - MeP_direct / MeP_indirect

Mel / MeYMeP_direct / MeY

Mel / MeP_directMeY / MeP_indirect

CH4 traits **genetically distinct** despite a common basis

→ average genetic correlations of 0.74 for MeP_direct/MeY & 0.53 for MeI/MeP_indirect (<0.40 for the other)

Expected because different units and different methodologies (MeP_direct & MeP_indirect)

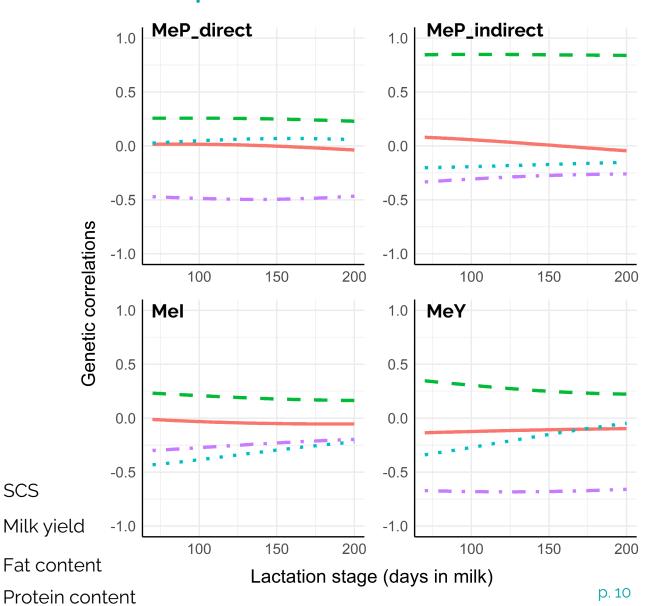
Which trait(s) to select for?

➤ Genetic correlations between CH₄ and milk traits

SCS

Weak unfavorable correlations with MY except for MeP indirect

Weak correlations with SCS


Weak to moderate favorable correlations with PC

Weak favorable or null correlations with FC

Compatible with inclusion of CH4 traits into breeding goals

> Take home messages

- Environmental impact of dairy cows due to CH4 production when digesting fibers
- Predict CH4 emissions from milk MIR spectra → obtain sufficient quantity of data to develop robust genetic analyses
- Technically possible to select to reduce CH4 emissions (heritability, genetic correlations...)
- o Which CH4 trait(s) to select for ?
- o It remains to quantify the impact of such a selection, and to determine the acceptability of its implementation (consequences of CH4 selection on other traits of interest).

Thank you for your attention!

INRAE – Jouy-en-Josas - France

solene.fresco@inrae.fr

