

Sequence-based GWAS of heat tolerance traits

in Holstein and Montbeliarde cattle

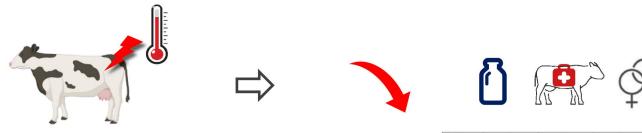
Aurélie VINET

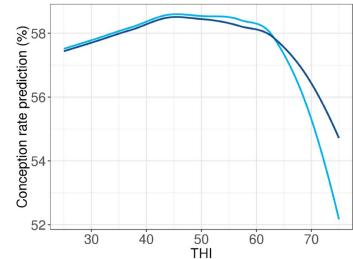
Mattalia S, Vallée R, Barbat A, Bertrand C, Hoze C, Taussat S, Sanchez MP, Boussaha M, Cuyabano BCD and Boichard D

Model

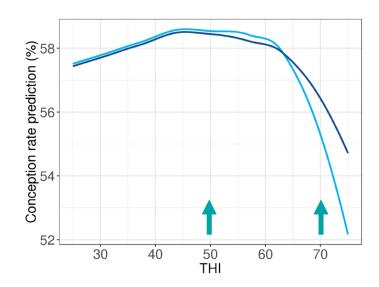
Context

Climate change ⇒ higher temperatures & more frequent extreme events





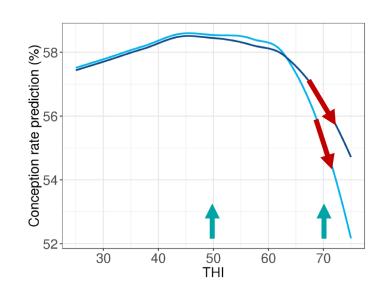
Climate change ⇒ higher temperatures & more frequent extreme events


Individual variability in the response to heat stress

Estimation of breeding values at all THI using random regressions models

⇒ Information about the **heat tolerance** with the **slope** of decay under heat stress

Level = genetic value at a given THI (50 or 70)

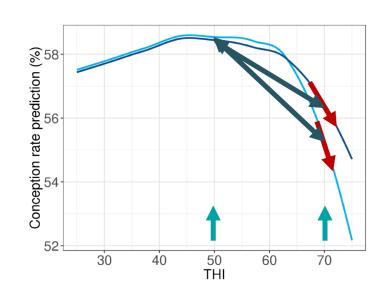


Estimation of breeding values at all THI using random regressions models

⇒ Information about the **heat tolerance** with the **slope** of decay under heat stress

Level = genetic value at a given THI (50 or 70)

Slope = derivative of the genetic value at THI 70


Estimation of breeding values at all THI using random regressions models

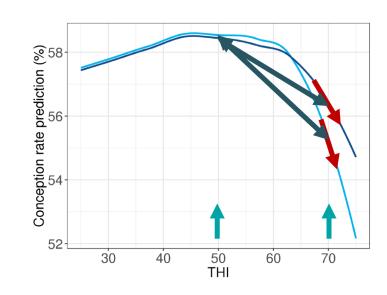
⇒ Information about the **heat tolerance** with the **slope** of decay under heat stress

Level = genetic value at a given THI (50 or 70)

Slope = derivative of the genetic value at THI 70

Difference between levels 50 and 70

Estimation of breeding values at all THI using random regressions models


⇒ Information about the **heat tolerance** with the **slope** of decay under heat stress

Level = genetic value at a given THI (50 or 70)

Slope = derivative of the genetic value at THI 70

Difference between levels 50 and 70

For fertility, production, and health

Summary

Objective

Identify genomic regions involved in heat tolerance, for production and functional traits

- Genetic determinism of heat tolerance and source of the genetic variability?
- Role of variants that could be selected with a heat tolerance index?

Data

Zootechnical data

First lactation performances (2010-2020)

Production: milk yield (MY)

Test-day performances

Health: somatic cells score (SCS)

Fertility: conception rate at 1st Al (CR)

Insemination dates and results

Genomic data

Genotypes = **Microarray** data (50k and 777k SNP)

Complete **sequence** data (1000 Bull Genomes Project)

Meteorological data

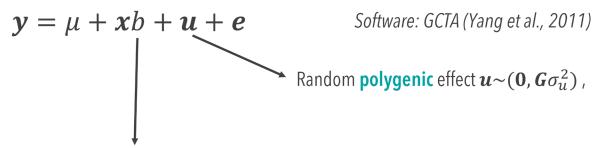
Daily estimated temperature and humidity

on a grid of 9892 squares of 8x8km

 $THI = (1.8 \times T + 32) - (0.55 - 0.0055 \times RH) \times (1.8 \times T - 26)$

Data

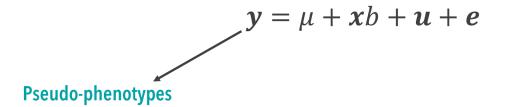
Number of data used for the genetic evaluations with random regression models


	MY and SCS	CR	MY and SCS	CR
nb cows with data	4,846,320	5,425,878	1,040,936	981,581
nb records	38,304,814	5,425,878	8,332,729	981,581
% perf recorded at THI ≥ 70	1.8%	0.9%	2.3%	1.3%

GWAS: Model

within breed single-trait association analyses between 13 millions of variants* and the traits

* Polygenic variants (SNP) with MAF \geq 2% and R² (Minimac) \geq 20%


Additive **fixed effect of variant** (SNP) to be tested for association

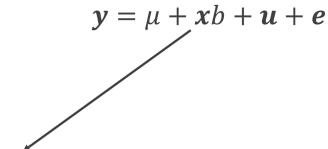
Stat test = variant effect's estimate / estimate's standard error

GWAS: Model

within breed single-trait association analyses between 13 millions of variants* and the traits

* Polygenic variants (SNP) with MAF \geq 2% and R² (Minimac) \geq 20%

Deregressed proofs (DRP) from EBV, weighted by equivalent record contributions


⇒ **GWAS were implemented on sires' genomic sequences** (better reliability of sires' pseudo-phenotypes)

Only sires with all DRP were kept = 4654 Holstein and 1737 Montbeliard sires

GWAS: Model

within breed single-trait association analyses between 13 millions of variants* and the traits

* Polygenic variants (SNP) with MAF \geq 2% and R² (Minimac) \geq 20%

Vector of **imputed genotypes**

(number of copies of the 2nd allele)

777k imputed genotypes

Imputed WGS

- No difference between QTL of Levels at THI50 and Levels at THI70
 - Little GxTHI in our data ($rg_{(Level_THI50; Level_THI70)} > 0.8$) (Vinet et al., 2023; 2024)
 - No region of the genome associated with trait at THI70 and not with trait at THI50
 - Interest for detecting QTL antagonistic between levels and slopes

ımmar

GWAS: Results

- No difference between QTL of Levels at THI50 and Levels at THI70
- → 16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)

16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)

- 11 in Holstein, 5 in Montbeliarde
- 4 QTL targeting genes associated with heat tolerance in other studies

16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)

11 in Holstein, 5 in Montbeliarde

4 QTL targeting genes associated with heat tolerance in other studies

sp.	gene	trait signif associated	
cattle	VPS13B	Slope_MY, Holstein	Heat tolerance estimated by the slope of production loss (Cheruiyot et al., 2021)
cattle	ASL	Slope_CR, Montbeliarde	Rectal temperature in a hot environment (Dikmen et al., 2015)
chicken	KIRREL3	Slope_MY, Holstein	Immune response in heat stressed chickens (Saelo et al., 2019)
pig	RABGEF1	Slope_CR, Montbeliarde	Differentially expressed in heat-tolerant vs heat-sensitive pigs (He et al., 2020)

16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)

11 in Holstein, 5 in Montbeliarde

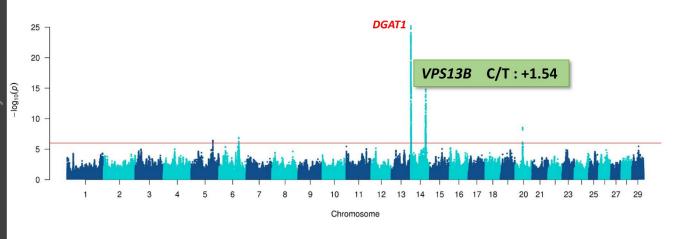
4 QTL targeting genes associated with heat tolerance in other studies

Some "new" QTL for heat tolerance targeting genes associated with traits of interest in the literature:

sp.	gene	trait signif associated	
in vitro	E124	Slope_MY, Holstein	Apoptosis (Gu et al., 2000)
mice	CUX1	Slope_SCS, Holstein	Immunity and coat phenotypes, impaired lactation (Ellis <i>et al.</i> , 2001; Sansregret <i>et al.</i> , 2008; Sinclair <i>et al.</i> , 2002)
cattle	FTO	Diff_CR, Montbeliarde	Fertility (Galliou et al., 2020)
cattle	KHDRBS3	Slope_MY, Holstein	Fat composition and milk production (Buitenhuis et al., 2014; Jiang et al., 2019; da Cruz et al., 2021)
cattle	ABCC9	Slope_MY, Holstein	Fat yield and udder health (Jiang et al., 2019; Tribout et al., 2020)

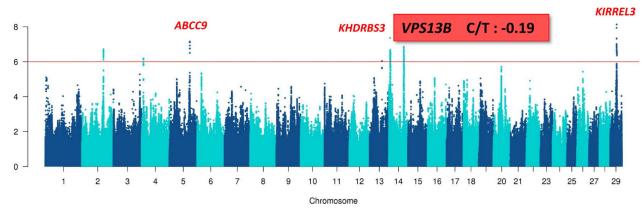
16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)

11 in Holstein, 5 in Montbeliarde

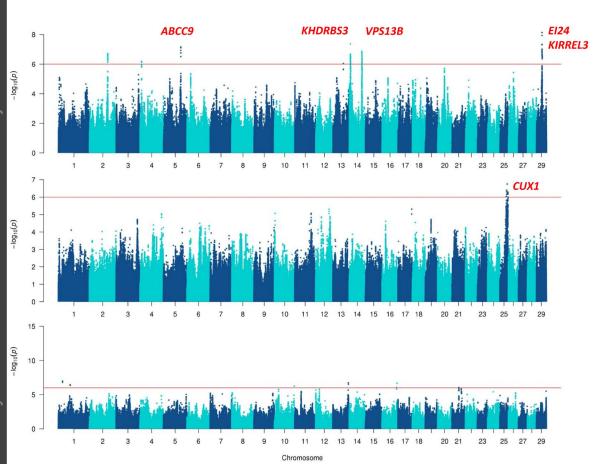

4 QTL targeting genes associated with heat tolerance in other studies

Some "new" QTL for heat tolerance targeting genes associated with traits of interest in the literature:

Heat tolerance QTL \neq Levels QTL (except *VPS13B* for levels and slope of MY)


 $-\log_{10}(\rho)$

GWAS: Results


Holstein

MY, LEVEL at THI 50

MY, SLOPE at THI 70

- No differences between QTL of Levels at THI50 and Levels at THI70
- □ 16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)
- QTL of heat tolerance are different according to the performances analyzed (MY, SCS or CR)

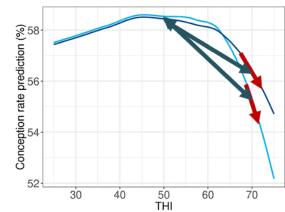
Holstein

MY, SLOPE at THI 70

SCS, SLOPE at THI 70

CR, SLOPE at THI 70

- No differences between QTL of Levels at THI50 and Levels at THI70
- → 16 QTL of heat tolerance traits (slopes and differences between levels 50 and 70)
- QTL of heat tolerance are different according to the performances analyzed (MY, SCS or CR)


Consistent with polygenic results (Vinet et al., 2024):

 $rg_{(slope_MY and slope_CR)} > 0$ but moderate

Slope of decrease = heat tolerance + other functions (ability to prioritize functions during heat stress)

- No differences between QTL of Levels at THI50 and Levels at THI70
- 16 QTL of heat tolerance traits (*slopes* and *differences* between levels 50 and 70)
- QTL of heat tolerance are different according to the performances analyzed (MY, SCS or CR)
- QTL of heat tolerance are different according to the method used (slopes or differences)

between levels 50 and 70)

Summary

Few QTL of heat tolerance traits

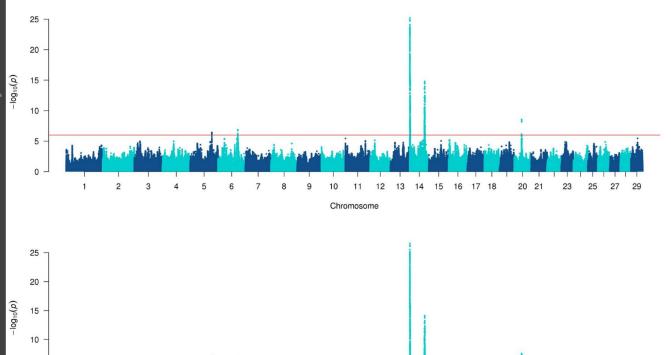
Weak heritabilities

Predicted traits, not measured traits

- No QTL with very strong effect, nor any 'perfect' candidates
- Some genomic regions could be selected for heat tolerance without detrimental effect on levels.

... to be confirmed with additional analyses

Acknowledgements



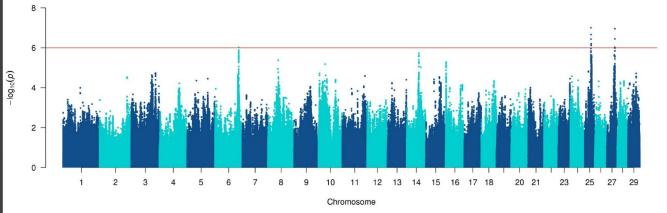
CAICalor

GWAS: Results - Level 50 vs Level 70

Holstein

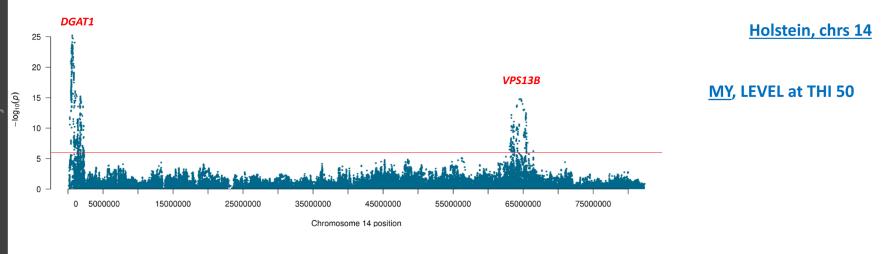
MY, LEVEL at THI 50

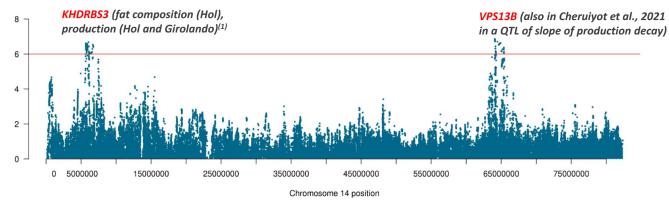
MY, LEVEL at THI 70


5

GWAS: Results - Level 50 vs Level 70

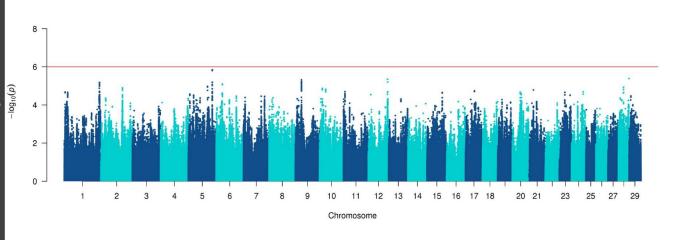
CR, LEVEL at THI 50

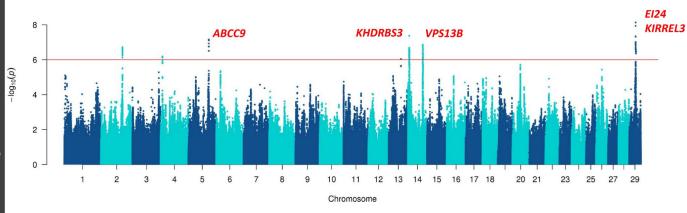




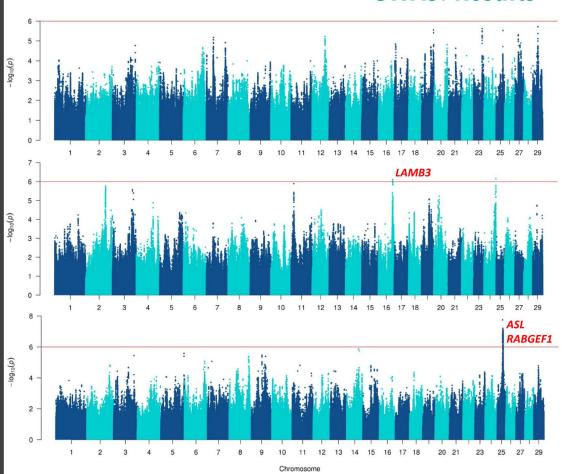
CR, LEVEL at THI 70

 $-\log_{10}(\rho)$


GWAS: Holstein results - focus on chromosome 14


MY, SLOPE at THI 70

(1) Buitenhuis et al., 2014; Jiang et al., 2019; da Cruz et al., 2021



Holstein

MY, DIFFERENCE 50-70

MY, SLOPE at THI 70

Montbeliarde

MY, SLOPE at THI 70

SCS, SLOPE at THI 70

CR, SLOPE at THI70