



# Economic values for organic dairy cattle production systems in Denmark

H. M. Nielsen, J. Rind Thomassen, S. Østergård, L. P. Sørensen, J. Ettama, J. Clasen, M. Kargo











DEPARTMENT OF ANIMAL AND VETERINARY
SCIENCES











- In Denmark organic milk is ~ 30%
- However, only the farm management is specifically organic
- All breeding material originates from conventional dairy production



# Background



#### **Conventionel breeding material a problem:**

- 1) Sub-optimal genetic gain = Animals not adapted for organic production
- 2) Decreased farmer profit and lower consumer acceptance
- 3) Production systems and market demands may differ between conventional and organic farms

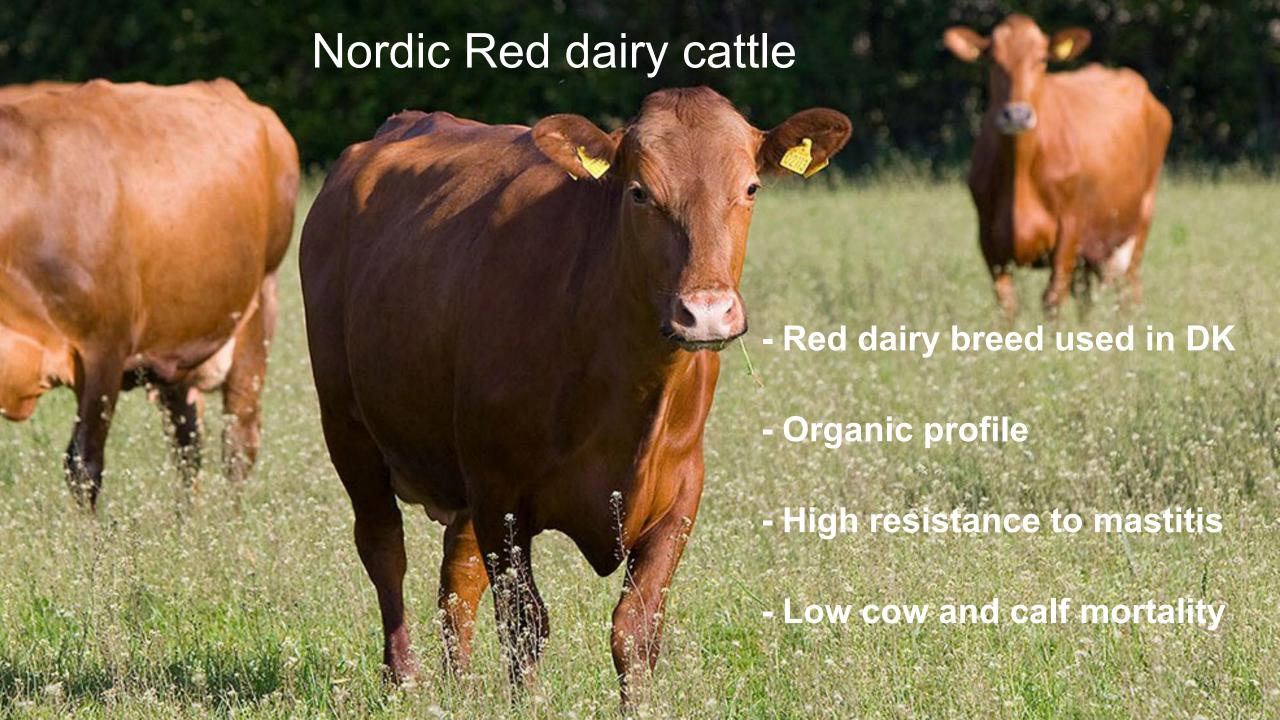


breeding goal tailored for organic production



### Aim




#### **Ø-KO-AVL** project:

Develop a breeding program that is adapted to organic dairy production and consumer preferences

#### First step:

Estimate economic values for future organic production systems

Develop a method to predict future production systems





## Economic value



The breeding goal express the direction of genetic improvement with traits and their economic values

Change in profit of the **production system** by a unit genetic improvement in a given trait (Hazel, 1943)

Should be relevant when we see the result of genetic improvement

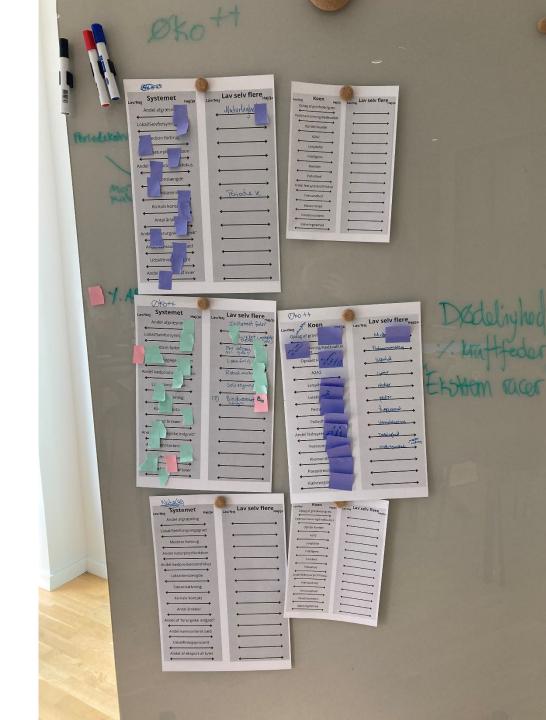
### How to predict future circumstances?





# Farmer sessions

- 2 workshops with 3-8 farmers


#### **Discussion:**

- 1) What are the future organic production systems?
- 2) Which traits characterize the future organic cow?

Define future production systems



**Economic values** 







# 3 future production systems

| Characteristics | Present organic                 |
|-----------------|---------------------------------|
| # cows          | 400                             |
| Calving         | All year                        |
| Feeding         | 60% roughage<br>40% concentrate |
| Antibiotics     | +                               |
| Cow-calf        | Seperated                       |
| Beef calves     | Sold                            |





# 3 future production systems

| Characteristics | Conventional organic            | Organic +                                |
|-----------------|---------------------------------|------------------------------------------|
| # cows          | 400                             | 200                                      |
| Calving         | All year                        | Seaonal calving 2 / yr                   |
| Feeding         | 60% roughage<br>40% concentrate | Grazing Silage Locally grown concentrate |
| Antibiotics     | +                               | +                                        |
| Cow-calf        | Seperated                       | With a cow 3 month                       |
| Beef calves     | Sold                            | Grown at farm                            |



**Beef calves** 

Sold



Grown at farm

# 3 future production systems

|                 | <u> </u>                        |                                          |                                    |
|-----------------|---------------------------------|------------------------------------------|------------------------------------|
| Characteristics | Conventional organic            | Organic +                                | Low-input/<br>low-output           |
| # cows          | 400                             | 200                                      | 100                                |
| Calving         | All year                        | Seaonal calving<br>2 / yr                | Seasonal calving 1 / yr            |
| Feeding         | 60% roughage<br>40% concentrate | Grazing Silage Locally grown concentrate | Grazing Silage + hay during winter |
| Antibiotics     | +                               | +                                        | No milk from treated cows          |
| Cow-calf        | Seperated                       | With a cow 3 month                       | With a cow 5 month                 |

Grown at farm



### **Traits**



#### Milk yield

Diseasetraits
Reproduction traits
Longevity
Calving ease
Calf survival

Feed efficiency
Methane emission
Grazing ability
Cow-calf relationship







## Method – simulation

### Simherd (Østergård et al., 2014):

Simulates a dairy farm

Mechanistic, dynamic and stochastic model

Changes in a trait corrected for genetic changes in other traits in the breeding goal



# Eco. values for mastitis in 2 systems





Treated cows slaughtered Higher replacement





## Conclusion

- Production system highly impact EV of traits (mastitis)
- Farmer sessions can be used to define future circumstances
- Next step consumers studies



