

75th **EAAP Annual Meeting** Florence – Italy

Only 100% to share – breeding objectives revisited for improved sustainability and animal welfare

Birgit Fuerst-Waltl¹, Alfons Willam¹, Christa Egger-Danner² and Christian Fuerst²

¹ Institute of Livestock Sciences, BOKU University, Vienna, Austria

² ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria

Overview

- Background
- General aspects
 - Breeding objectives and traits
 - Total merit index
- Practical example
 - Traits, weights and (expected) selection response in Fleckvieh

- Balanced breeding –
 now and then?
 - Several indices (breeding objectives?)
 - (Partly) missing traits
 - Too many traits already?
 - Concluding remarks

Focus on dairy and dual purpose cattle

EAAP 2024

Background

- Breeding focused on production and conformation for a long time
- Functional traits followed
 - to mitigate negative side-effects of focussing on performance,
 - to meet new socio-political demands,
 - and to increase profitability
- Increasing number of traits considered at the same time

- Index selection was/is key
 - Weighting of traits according to their relative (economic) importance
- Modern technology enabled speeding up genetic progress
 - Data recording and availability
 - Computing capacity
 - Genomic information

Further extension towards more sustainability and animal welfare demanded – breeding objectives get even more complex

General aspects

EAAP 2024

Steps in breeding

Breeding objective

Û

Performance testing

Û

Genetic evaluation

Ú

Selection

Û

Genetic gain

Aim of breeding is genetic gain for traits defined in the breeding objective

Steps in breeding

Breeding objective

Û

Performance testing

Û

Genetic evaluation

Ţ

Selection

Û

Genetic gain

Which way to go?
Which traits shall be considered
(simultaneously)?
For example in milk producing animals:

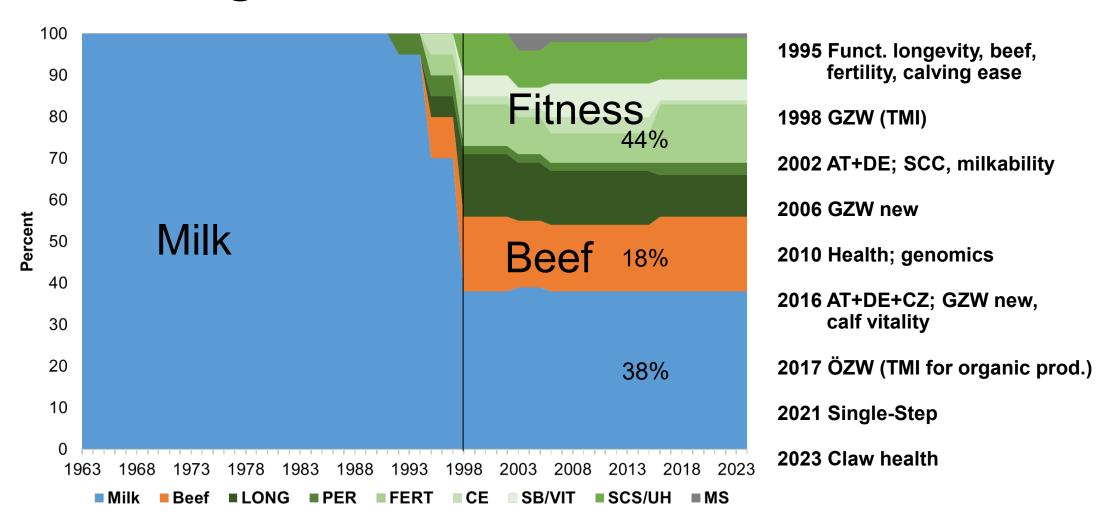
Total merit index (TMI)

- Mathematical definition of the breeding objective
- Combines traits and trait complexes, weighted in accordance to economic importance
- Should consider future conditions
- Objective ranking according to overall genetic value

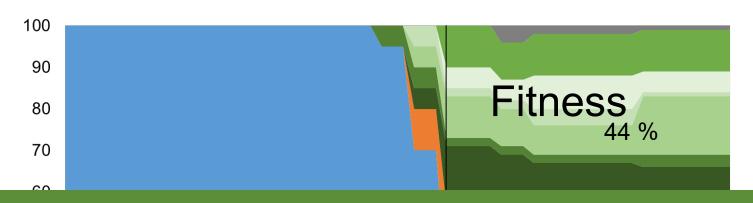
- Higher relative weights –
 higher potential genetic gain
 - Dependent on heritability/ reliabilities/correlations to other traits

More traits – less relative weight on each of them → selection response reduced for single traits in case of antagonistic relationships

EAAP 2024



Practical example – traits, weights and (expected) selection response in Fleckvieh


Fleckvieh – genetic evaluations and TMI

Fleckvieh – genetic evaluations and TMI

1995 Funct. longevity, beef, fertility, calving ease

1998 GZW (TMI)

2002 AT+DE; SCC, milkability

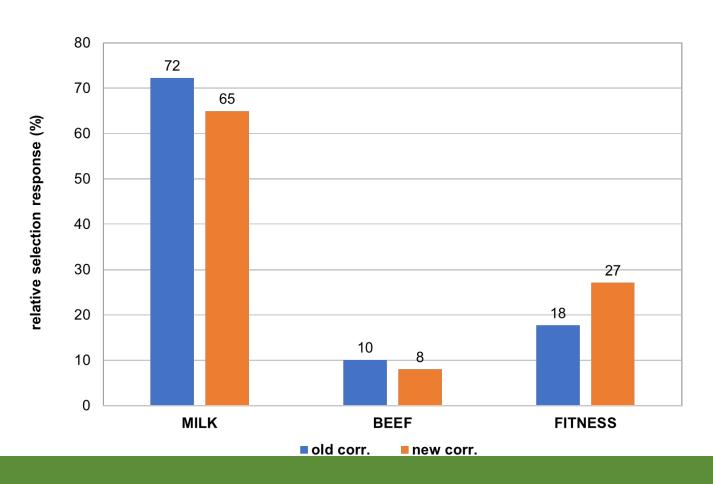
Conformation indirectly, Claw health not yet in TMI
Work in progress: Metabolic stability, liveweight/efficiency,
methane emissions

Planned: Calf health and behavioural traits, heat tolerance/resilience

Latest change in breeding objective in 2016

- Survey among farmers (new traits, personal breeding objectives, ...)
- Derivation of economic values, estimation of genetic correlations
- Discussions between genetic evaluation team/science, breeders and breeders' representatives

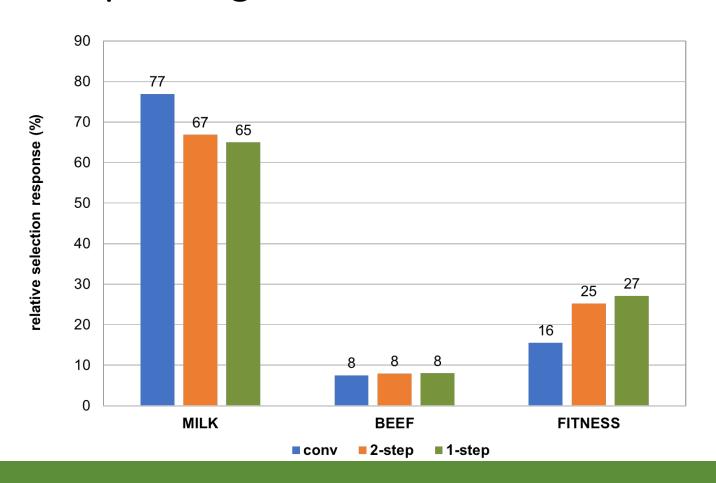
Consensus based on


combination of derived economic values and selection response

Cooperation between science, breeding organisations and breeders is time intensive but vital for acceptance

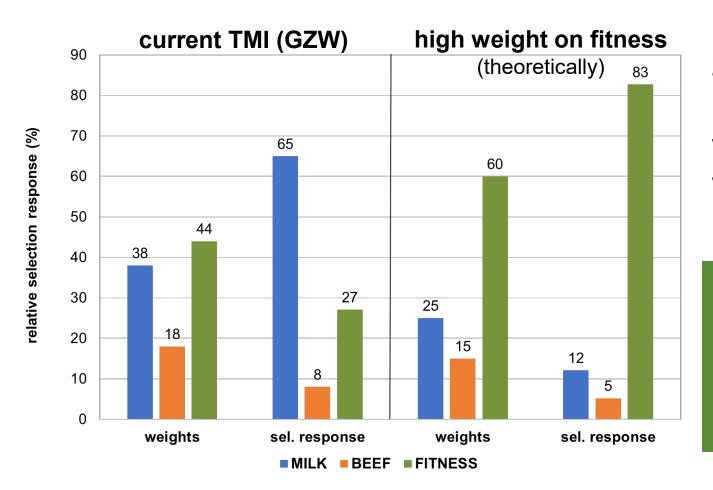
Selected selection response scenarios Updating genetic correlations

Scenarios – Current methodology (Single Step) and weighting (38:18:44) with genetic correlations before and after 2016


- within functional traits more synergistic
- between functional traits and production more antagonistic

Strong effect of genetic correlations, regular revision advised

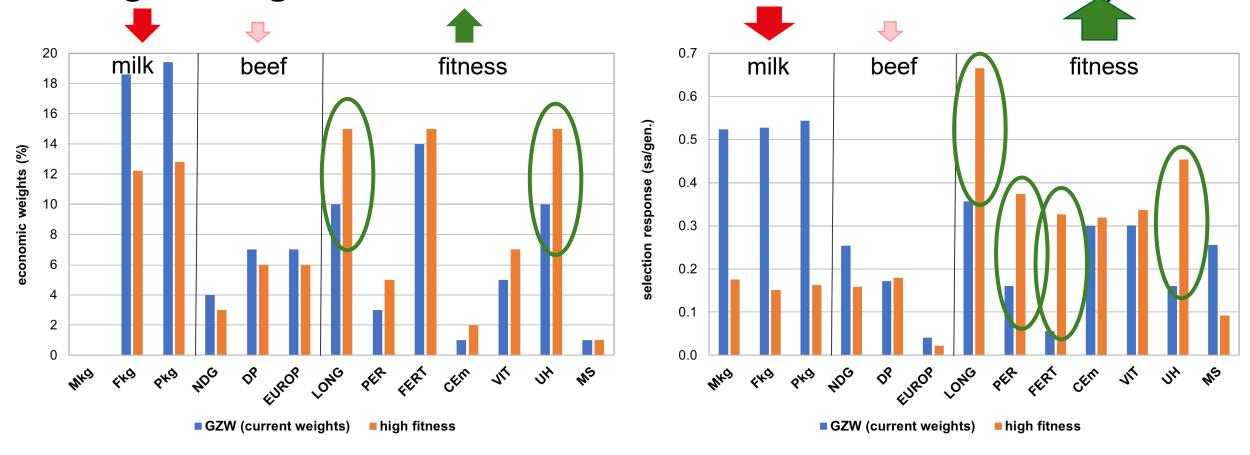
Selected selection response scenarios Impact of genomic evaluation



Scenarios – Current weighting (38:18:44) and reliabilities of conventional, 2-step and single step evaluation

Selected selection response scenarios Higher weight on functional traits

Scenarios – Current methodology (single step) and current weighting (38:18:44) vs. high weight on functional traits (25:15:60)


BUT: monetary genetic gain overall only 86% compared to scenario with original weights

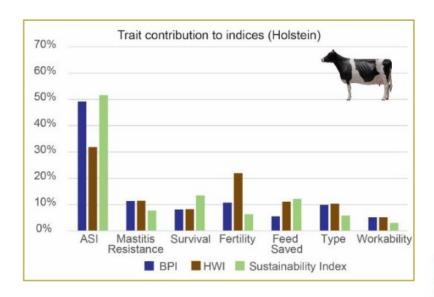
Selected selection response scenarios

Higher weight on functional traits – effect on traits/trait complexes

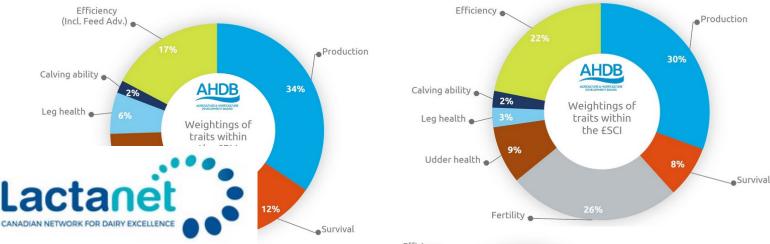
If reliabilities of functional traits are high (genomics), higher weights can result in remarkable genetic gain

Balanced breeding – now and then?

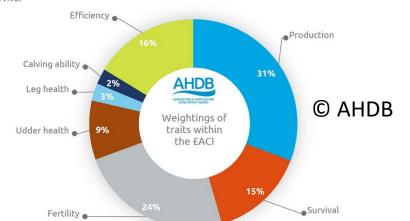
Several indices (breeding objectives?)


- Approach in some populations is creating different overall indices
 - Focus on economics
 - Focus on trait groups that are important for different players
- Some re-ranking obviously occurs
- Way to address different interest groups

- As long as goals are not contradictory, a valid approach
- Alternatively, mating programmes where breeders can give in their options for different traits/trait complexes



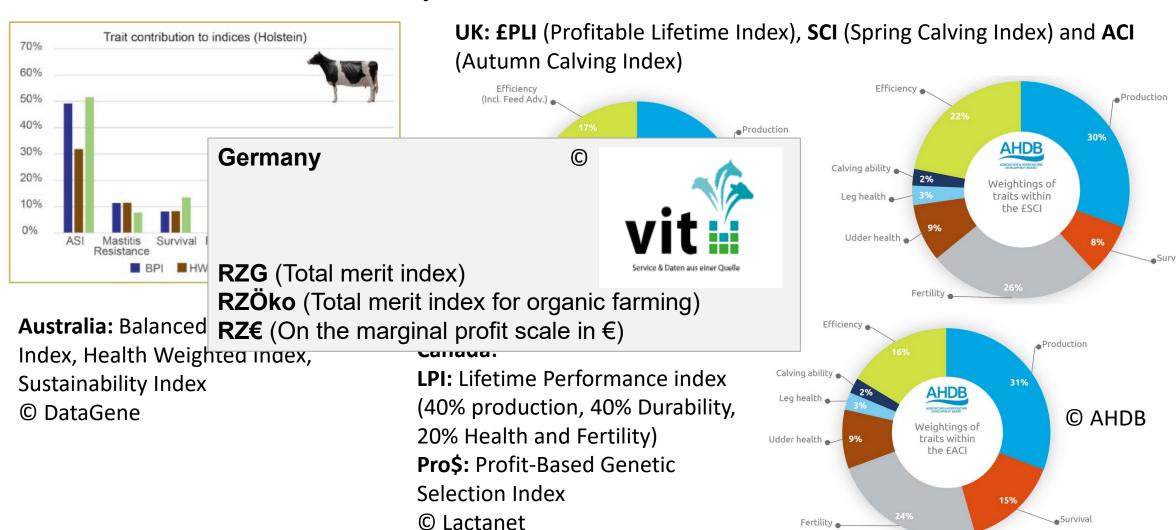
Different indices, Holstein


Australia: Balanced Performance Index, Health Weighted Index, Sustainability Index © DataGene **UK: £PLI** (Profitable Lifetime Index), **SCI** (Spring Calving Index) and **ACI** (Autumn Calving Index)

Canada:

© Lactanet

LPI: Lifetime Performance index (40% production, 40% Durability, 20% Health and Fertility)
Pro\$: Profit-Based Genetic
Selection Index



19

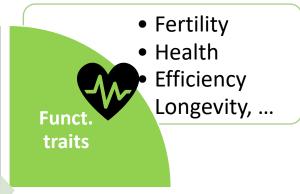
Different indices, Holstein

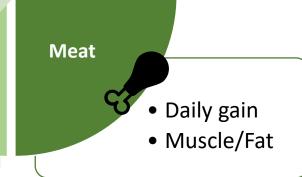
Today's breeding objectives/TMIs

rarely purely economic —
socio-political aspects already often considered

Tendency worldwide for more balanced
breeding objectives

More and more traits reflecting sustainability and welfare have already found their way into breeding – some however (partly) missing





(Partly) missing traits

(Partly)
missing
sustainability
and welfare
related
traits?

- Environmental impact and and resource use contents (e.g. emissions, use of land, energy and water, feed/food competition)
- Animal welfare related traits
 (e.g. heat tolerance, calf diseases, polledness, cross-/intersucking)

ion

Discussion – too many traits already – all missing ones to be included? How?

- Well considered by pre-selection or mating strategies?
 - Hereditary defects
 - Polledness
- Partly already considered indirectly?
 - Resilience/heat tolerance

- Might get too much attention when selecting bulls?
 - Twinning rate
 - Sucking deficiency
- Are difficult/expensive to measure?
 - Feed intake
- Have no direct economic impact

Question of breeders: we only have 100% to share – if new traits are included, for which traits do we reduce weights? Which effect does it have?

Discussion – too many traits already – all missing ones to be included? How?

- New traits included affect others, depending on genetic correlations and reliabilities
- New traits coming, others going? Careful evaluation of the traits needed
- If no economic values derivable, application of desired gain/expected selection response approaches

- Weighting performance traits:
 Considering health, welfare and resource-related constraints, how much increase is possible or wanted?
- Cooperations across countries and/or use of indicator traits help to overcome problems of data availability and costs (e.g. MIR, data from automation)

Concluding remarks

- Sustainability in breeding includes many aspects, e.g.
 - Continuous income for farmers
 - Health and welfare for animals, health and well-being for farmers and consumers
 - Impact on environment (negative – e.g. emissions, positive – e.g. biodiversity)

- Revision of breeding objectives to make them more sustainable is inevitable
- Needed to facilitate successful implementation
 - Sound scientific work, use of multiple data sources and the most modern methods
 - Openness for discussions and changes
 - Participation of all those involved

75th **EAAP Annual Meeting** Florence – Italy

Thank you – room for questions!

75th **EAAP Annual Meeting** Florence – Italy

References

Information from the following websites:

Agriculture and Horticulture Development

Board AHDB ahdb.org.uk

DataGene www.datagene.com.au

ICAR www.icar.org

Lactanet lactanet.ca

Rinderzucht AUSTRIA www.rinderzucht.at

Vit Verden www.vit.de

Selected Publications:

Burns et al. 2022 Animal 16:100535

Cole et al. 2021. J Dairy Sci 104:5111

Fuerst-Waltl et al. 2016. J Dairy Sci 99:9796

Goddard 1998. J Dairy Sci 81:6

Gonzáles-Recio et al. 2020. J Dairy Sci 103:7210

Groen et al. 1997. Livest Prod Sci 49: 1

Hazel 1943. Genetics 28:476

Hazel and Lush 1942. J Hered 33:393

Just et al. 2018. J Dairy Sci 101:5207

Miglior et al. 2005. J Dairy Sci 88:1255

Miglior et al. 2017. J Dairy Sci 100:10251

Richardson et al. 2024. JDS Communication in press

Shook 2006. J Dairy Sci 89:1349

Van Staaveren et al. 2022 J Dairy Sci 107:1510