Stratified mating quota: a novel approach to effectively reduce inbreeding rate

A case study applied to the Friesian Horse population

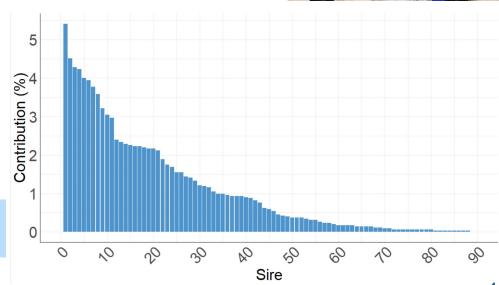
Inbreeding and its management

- Many livestock populations have high inbreeding rates
 - Selection
 - Skewed sire contributions

- Inbreeding rate per generation (ΔF) should be <1% and preferably <0.5% (FAO)
- Theoretical best solution is optimal contribution selection
 - often practically not feasible → other alternatives needed

Aim

Evaluate the **effectiveness** of **breeding strategies**, including a novel approach of **stratified mating quota**, using **stochastic simulations**


Friesian horse population as case study

- Population statistics:
 - 3,500 foals born per year from approved sires
 - ~100 approved breeding sires
 - closed population status
 - bottlenecks in the past
 - skewed sire contribution
- High inbreeding rates

The 10 most popular sires responsible for 35% of offspring in 2022

Current situation of the Friesian horse population

• Current inbreeding rate (ΔF) = 0.72% per generation

Materials & Methods

- Stochastic simulations using MoBPS (v 1.11.10) over 75 years with 25 repeats
- Include pedigree of Friesian horses (N = 163,035) since 1880
- Include population characteristics
 - 90 breeding sires and 3500 breeding mares per year
 - Contribution of sires based on 2022
 - Constant population size
- Mimicked selection
 - Single quantitative trait with selection accuracy = 0.5

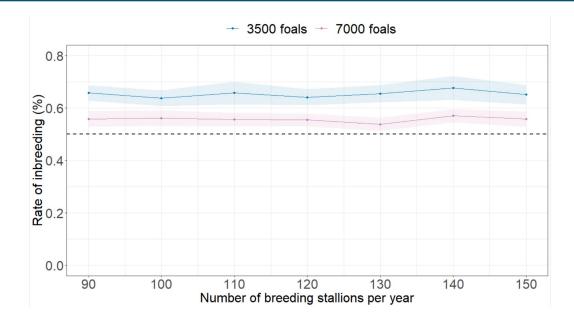
Possible strategies simulated

1 Increase the number of parents

2. Stricter mating quota

3. Mean kinship selection – only use sires with lower than average f

4. Stratified mating quota – mating quota depends on kinship of the stallion



1. Increase the number of parents

Strategy	ΔF (current sim. $\Delta F = 0.66\%$)
1. More sires (N = $90 \rightarrow 150$)	No effect
1. More mares (N = $3,500 \rightarrow 7,000$)	0.56%

2. Stricter mating quota

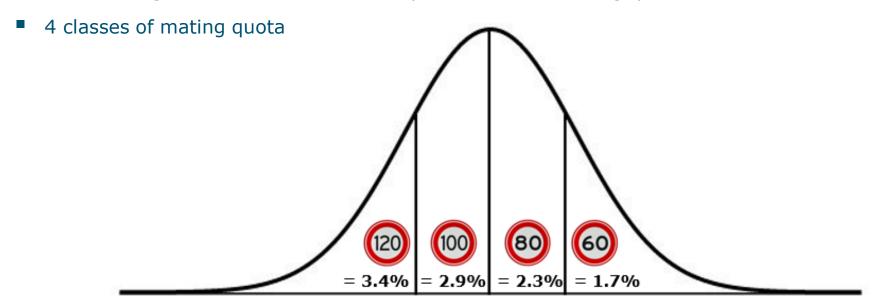
- Current breeding limit is 180 matings/sire/year
- Maximum of 100 (2.9%) or 80 (2.3%) offspring per sire per year

Strategy	ΔF (current sim. $\Delta F = 0.66\%$)
1. More sires (N = $90 \rightarrow 150$)	No effect
1. More mares $(N = 3,500 \rightarrow 7,000)$	0.56%
2. Mating quota (max. 100 offspring/sire/year)	0.57%
2. Mating quota (max. 80 offspring/sire/year)	0.55%

3. Mean kinship selection

- Only use sires with lower than average mean kinship (50% sires is selection candidate)
- Mean kinship level = average kinship of a sire to all foals born in the last three years

Strategy	ΔF (current sim. $\Delta F = 0.66\%$)
1. More sires (N = $90 \rightarrow 150$)	No effect
1. More mares $(N = 3,500 \rightarrow 7,000)$	0.56%
2. Mating quota (max. 100 offspring/sire/year)	0.57%
2. Mating quota (max. 80 offspring/sire/year)	0.55%
3. Mean kinship selection	0.33%


Very effective → but hardly accepted

4. Stratified mating quota

Sire with higher individual mean kinship has a stricter mating quota

Average mean kinship value

4. Stratified mating quota

- Sire with higher individual mean kinship has a stricter mating quota
- 4 classes of mating quota

Strategy	ΔF (current sim. $\Delta F = 0.66\%$)
1. More sires (N = $90 \rightarrow 150$)	No effect
1. More mares (N = $3,500 \rightarrow 7,000$)	0.56%
2. Mating quota (max. 100 offspring/sire/year)	0.57%
2. Mating quota (max. 80 offspring/sire/year)	0.55%
3. Mean kinship selection	0.33%
4. Stratified mating quota (120,100,80 or 60 offspring/sire/year)	0.43%

Stratified mating quota more effective than general quota

Stratified mating quota more effective than a general mating quota

- Stratified mating quota (mating quota = 120, 100, 80, 60)

 $\Delta F = 0.43\%$

- General mating quota (mating quota = 80)

 $\Delta F = 0.55\%$

Use of close relatives will be restricted

ORIGINAL ARTICLE Open Access © (i)

Evaluation of breeding strategies to reduce the inbreeding rate in the Friesian horse population: Looking back and moving forward

Stratified mating quota		ΔF	
1. Current: four classes	(60,80,100,120)	0.43%	

Stratified mating quota		ΔF
1. Current: four classes	(60,80,100,120)	0.43%
2. Two classes	(60,120)	0.46%

Stratified mating quota		ΔF	
1. Current: four classes	(60,80,100,120)	0.43%	
2. Two classes	(60,120)	0.46%	
3. Two classes	(80,100)	0.56%	

Stratified mating quota	1	ΔF
1. Current: four classes	(60,80,100,120)	0.43%
2. Two classes	(60,120)	0.46%
3. Two classes	(80,100)	0.56%
4. Continuous classes	(60-120)	0.47%

Take home message

- Stratified mating quota as novel approach:
- more effective than a general mating quota
- practically acceptable for the Friesian horse population
- four classes seem optimal

• Applicable to other species with high ΔF and popular sire effects

Contact: marije.steensma@wur.nl

