INRAE

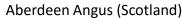
Study of genetic progress in the context of disconnection between two originally connected populations

M. Wicki^{1,2}, A. Legarra³, J. Raoul^{1,2}

¹INRAE, INP, UMR 1388 GenPhySE, F-31326 Castanet-Tolosan, France

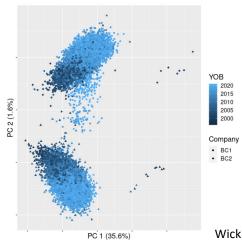
²Institut de l'Elevage, Castanet-Tolosan 31321, France

³Council on Dairy Cattle Breeding, Bowie, MD 20716, USA



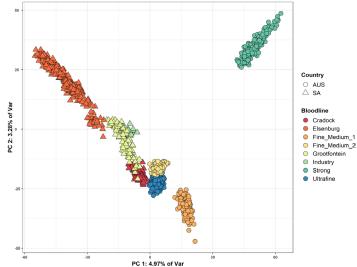
Context

Many cases of divergence in livestock populations



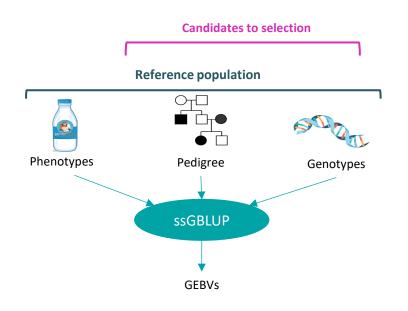
Angus (US, Australia, etc.)

French Lacaune Dairy breed


Wicki et al. 2023

Superfine wool Merino

Strong wool Merino



Nel et al. 2022

1st September 2024 – Marine Wicki **Prime SAMM** EAAP 2024 Florence, Italy

sasheepexpo.com.au

Context

Reference population

→ Size (Daetwyler et al., 2008; Liu et al., 2011)

→ Design

- Relatedness within the reference population (Pszczola et al., 2012)
- Relatedness between candidates to selection and the reference population (Zhang et al., 2018; de Roos et al., 2009; Habier et al., 2010)

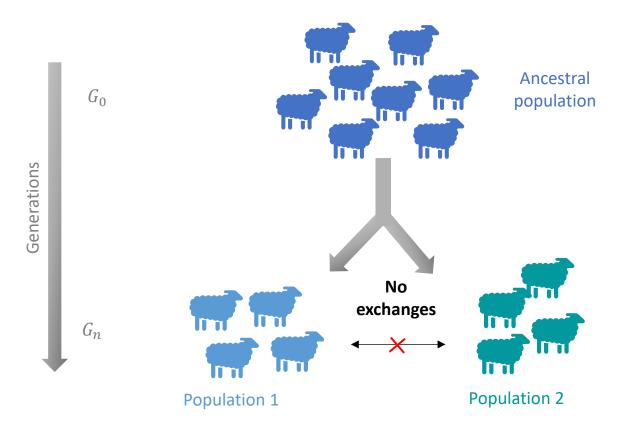
- → How divergence of populations can be problematic?
 - Separate evaluation → reduction in the reference population size
 - Common evaluation → reduction in relatedness between candidates and reference across sub-populations

Context

Future problematic case :

- High use of artificial insemination in French dairy sheep
- Organic farming prohibits the use of synthetic hormones to induce œstrus

→ Split of conventionnal vs organic breeding program ?



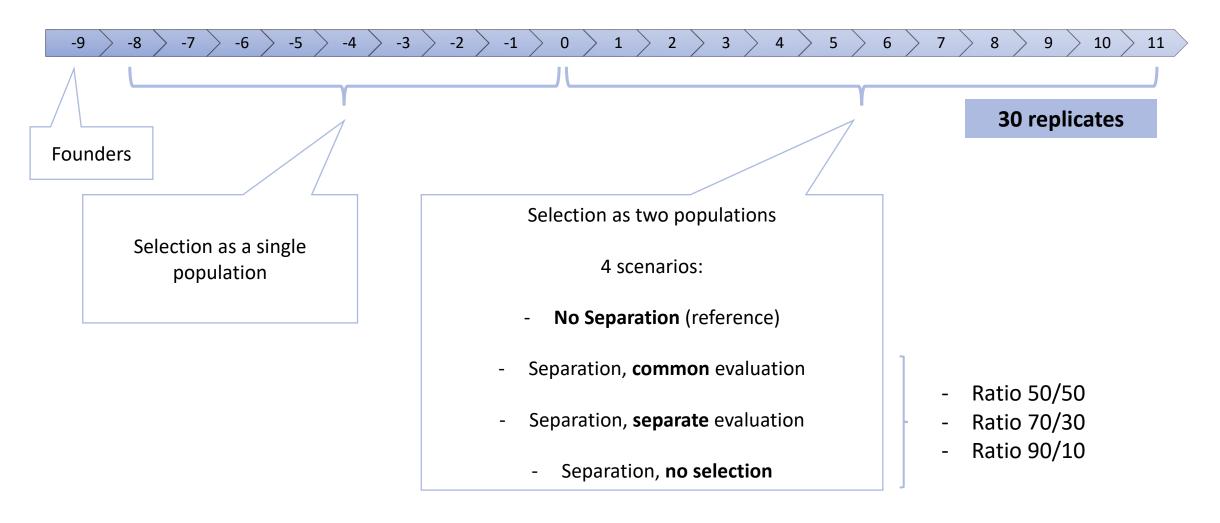
Research question

What would be the loss, in terms of genetic gain, of such a split? To what extent is combined vs separate genomic evaluation more advantageous?

Objective: Simulation of disconnection between two originally connected populations

- → Study of **genetic gain**
 - → Combined evaluation
 - → Separate evaluation
- → Hypothesis: genetic gain is affected by the level of differentiation
 - → Population size

Method – mating, reproduction and selection


- Breeding program inspired by dairy sheep
- Stochastic simulation program coded in Fortran adapted from Raoul et al., 2017
- 9 discrete generations of single populations followed by 12 discrete generations of divergence
- 1 phenotype per female: $y_i = TBV_i + c_i + e_i$

With y_i phenotype, TBV_i True Breeding Value = sum of QTL effects, c_i contemporary effect, e_i residuals effect

- QTL effects are assumed to be constant (no GxE, no GxG)
- Estimation of GEBVs (ssGBlup) with Blupf90+ software
- Only males are selected and genotyped
- 5400 females and 90 males per generation
- 2 progeny per female

Method – simulation steps

Method – simulation outputs

Founders

Selection cycles as single population

Separation of population as separate populations

Fst → Indicator of genetic differentiation between 2 populations

Accuracy: correlation TBVs and GEBVs of males of 1 year old (Intra-population)

Genetic gain: regression of TBVs of females of 1 year old over time from generation 7 to 11 (Intra-population)

Results – Fst in final generation

		No selection	Common	Separate	
			evaluation	evaluation	
	50/50	0.032	0.054	0.059	
	70/30	0.038	0.063	0.068	
7	90/10	0.085	0.124	0.134	

- → The more unbalanced the ratio, the faster the divergence
- → Selection speeds up divergence
- → Common evaluation slows down divergence compared with separate evaluation

Results - Accuracy

Scenario	No Separation	Common	Common	Separate	Separate
		Evaluation	Evaluation	Evaluation	Evaluation
		pop 1	pop 2	pop 1	pop 2
50/50	0.60	98.3%	100%	95.0%	98.3%
70/30	0.60	100%	100%	100%	96.7%
90/10	0.61	98.4%	93.4%	100%	86.9%

→ Lower accuracy for the smallest population (pop 2), particularly with a separate evaluation

Results – Genetic Gain

Scenario	No Separation	Common	Common	Separate	Separate
		Evaluation	Evaluation	Evaluation	Evaluation
		pop 1	pop 2	pop 1	pop 2
50/50	0.414	94.5%	98.5%	94.5%	98.6%
70/30	0.414	99.5%	96.4%	99.0%	92.8%
90/10	0.406	102%	85.7%	102%	83.4%

- → For balanced separation, the genetic gain in both populations is not impacted
- → For unbalanced separation :
 - → Genetic gain of the smallest population (pop 2) negatively impacted
 - → No effect for the biggest population
 - → The effect is even bigger when the population is small and the evaluation is separate

Conclusion

- Populations divergence negatively affects genetic gain
- The effect is potentially important if the population size is small and the evaluation is separate (loss of genetic gain of -16% per generation)
- Common evaluation may be a way to slow down this divergence but for small populations the effect on genetic gain is not totally offset
- Selection for different breeding goals between populations or GxE interactions may lead to greater loss in genetic gain

INRA

1st September 2024 –Marine Wicki EAAP 2024 Florence, Italy Breeding scheme optimization: balancing breeding goal(s), genetic progress and diversity la contribution financière du compte d'affectation spéciale developpement agricole et rural CASDAR (Jaguille Libert Liber