

Predicting genetic inbreeding load in dairy sheep

Simona Antonios¹, S.T. Rodríguez-Ramilo¹, A. Legarra², J.M. Astruc³, L. Varona⁴ and Z.G. Vitezica¹

¹ GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet-Tolosan, France

² CDCB, 4201 Northview Drive, 20716 Bowie MD, USA

³ Institut de l'Elevage, 31321 Castanet Tolosan, France

^⁴ Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain

simona.antonios@inrae.fr

Florence, 1st of September 2024

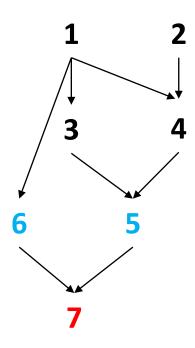
Summary

- Introduction
- Material and Methods:
 - Example with 7 animals
 - Real data in dairy sheep breeds
- Results
- Conclusions

Inbreeding load

- Inbreeding load is the fraction of the mutation load that is due to recessive variants which can be hidden in heterozygous condition
- The inbreeding load of individuals is a heritable additive trait that is only expressed when inbreeding occurs in their offspring and has an effect on the studied trait (e.g. milk yield)
- The magnitude of inbreeding depression in the offspring depends on the hidden (recessive) inbreeding load among ancestors

Objective


This work contributes

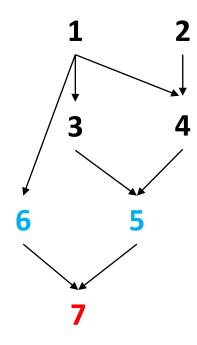
To estimate the genetic parameters for the **inbreeding load**, and predict the additive genetic value for the **inbreeding load** for milk yield in three dairy sheep breeds

> Example of 7 individuals

Inbreeding load

Pedigree of 7 animals

$$y = X\beta + Zu + ZKi + e$$


Partial inbreeding coefficients of each individual and the ancestors in cause

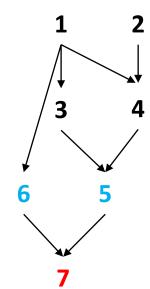
Individuals	Ancestors	Partial inbreeding
5	1	0.12500
6	1	0.25000
7	1	0.18750
7	2	0.03125
7	4	0.06250

> Example of 7 individuals

Inbreeding load

Pedigree of 7 animals

$y = X\beta + Zu + ZKi + e$


Partial inbreeding coefficients of each individual and the ancestors in cause

Individuals	Ancestors	Partial inbreed	ing
5	1	0.12500	
6	1	0.25000	_
7	1	0.18750	
7	2	0.03125	= 0.28125
7	4	0.06250	

Inbreeding coefficient can be partitioned into coefficients attributed to specific ancestors, known as **partial inbreeding coefficients**

> Inbreeding load

Pedigree of 7

animals

$$y = X\beta + Zu + ZKi + e$$

K: Lower triangular matrix K = T(I - P)

T: matrix, contains the partial inbreeding coefficients from the Mendelian decomposition

P: matrix with a diagonal of 0 and 0.5 in the elements that link an individual with its sire and dam

> Real data

Breed	Nb of animals in the pedigree	Nb of equivalent complete generations	Average milk yield (liters)
ВВ	190,276	7.04	193.00 ± 76.25
MTN	166,029	6.18	144.31 ± 60.25
MTR	633,655	7.82	197.52 ± 83.66

French dairy sheep breeds:

- Basco-Béarnaise (BB),
- Manech Tête Noire (MTN),
- Manech Tête Rousse (MTR)

Which have been selected for milk yield since ~1985 Al+Progeny testing until 2016, genomic selection since 2016

> Material and Methods

Our full model for real data on milk yield

$$y = X\beta + Fb + Z_u u + Z_u Ki + Z_p p + e$$

 $\pmb{X}, \pmb{Z}_u, \pmb{Z}_p$ and \pmb{K} : incidence matrices

B : fixed effects effect

F : inbreeding coefficients

 $b \hspace{1cm}$: inbreeding depression parameter

 $oldsymbol{u}$: additive genetic effects

 $oldsymbol{i}$: inbreeding load

 $oldsymbol{p}$: permanent environmental effect

e : residual effect

Flock-year-parity
Age at lambing*
Period of lambing*
Lambing-first test-day interval*

*within year and parity

Material and Methods

- F is the pedigree-based inbreeding (inbupgf90)
- Partial inbreeding coefficients partition total inbreeding into the different ancestors. Matrix **K** contains regression coefficients based on this partition. Programs available at https://github.com/alegarra/getPartialInbreeding
- Programs of the BLUPF90+ family were used to estimate variance components http://nce.ads.uga.edu/wiki/doku.php

> Comparison of models

 A likelihood ratio test (LRT) was performed from the REML results to assess goodness-of-fit and to compare both models:

Reduced Model (RM):
$$y = X\beta + Fb + Z_uu + Z_pp + e$$

Full Model (FM): $y = X\beta + Fb + Z_uu + Z_uKi + Z_pp + e$

• We calculated : $LRT = -2logL_{RM} - (-2logL_{FM})$

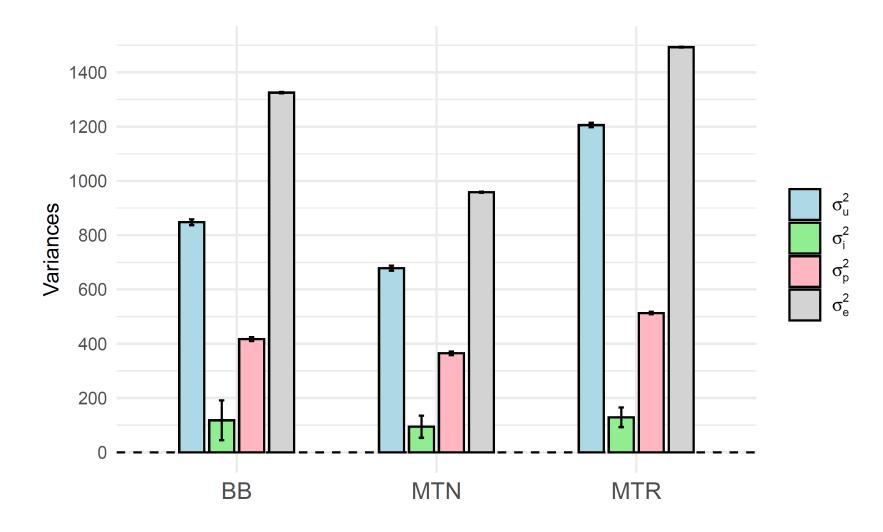
Breed	-2 log Likelihood		LRT	
	FM	RM	χ^2	P-value
ВВ	6,759,011.664	6,759,143.696	132.032	7.4 × 10 ⁻³¹
MTN	5,379,562.702	5,379,715.675	152.973	1.9×10^{-35}
MTR	22,626,973.729	22,627,357.574	383.845	9.1×10^{-86}

Model with inbreeding load fitted the data better than without inbreeding load in all the breeds

> Parameter estimates

The **inbreeding load** variance in:

- BB: was not different from zero
- MTN and MTR: was different from zero

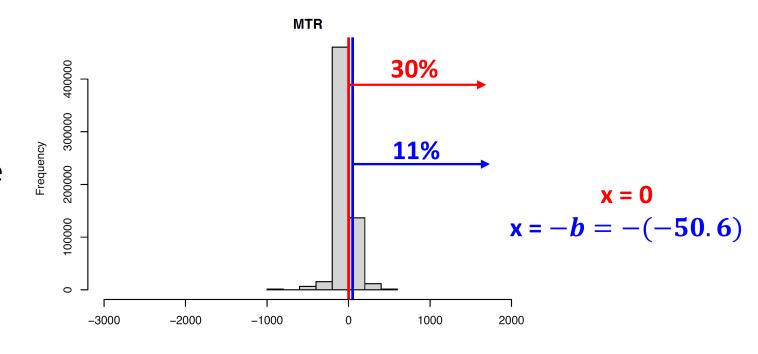

	σ_i^2	$r_{(u,i)}$
ВВ	11,804.0 ± 7,356.2	-0.09 ± 0.3
MTN	$9434.7 \pm 4,089.5$	-0.08 ± 0.2
MTR	$12,923.0 \pm 3,627.1$	$\textbf{-0.12} \pm \textbf{0.1}$

 $r_{(u,i)} \approx -0.1$ negative (as expected), small and with large standard errors in all cases Versus $r_{(u,i)} \approx -0.4$ in Varona et al. (2019):

- Inbreeding load effect is not genetically correlated with the additive genetic effect of milk yield
- Animals with high breeding values will not cause worse inbreeding depression if their descendants are inbred

> Parameter estimates

The **inbreeding load**variance (green)
corresponds around
4% of the phenotypic
variance in BB, MTN
and MTR


Parameter estimates for milk yield (liters) obtained using the full model

Distribution of the predicted inbreeding load genetic effects

Individuals with predicted inbreeding loads > -b:

- Would basically remove recessive alleles reducing milk yield in homozygote carriers
- Would compensate inbreeding load and produce a positive inbreeding effect

Which cause an improving in milk yield of their inbred descendants

Distribution of the predicted inbreeding load genetic effects in MTR breed (all animals)

> Conclusions

- A genetic variance exists for inbreeding load in MTN and MTR breeds
- Low values of genetic correlation between inbreeding load and breeding value effects imply that selection for milk yield will not cause increase inbreeding depression in milk yield in inbred animals
- The small magnitude of inbreeding load does not warrant selection based on this criterion

> Acknowledgments

- The authors thank breeders who provided the data
- Project ARDI2 (grant agreement EFA 032/01) from POCTEFA funds

Thank you for your attention!