Poultry and Plg Low-input and Organic production systems' Welfare

How dual-purpose is dual-purpose? The balancing act between fattening and laying performance: An index to describe dual-purpose poultry

Pluschke, H., Thobe, P. Lombard, S., Reverchon, M., Steenfeldt, S., Germain, K., Werner, D., Collin, A.

The 75th EAAP Annual Meeting

Session 2. Breeding scheme optimization: balancing breeding goal(s), genetic progress and diversity

Firenze, September 1, 2024

Outline for today's presentation

- 1. Status of Chick Culling in Europe
- 2. What is Dual-Purpose Poultry?
- 3. PPILOW Project on-station trials
 - a) Materials & Methods
 - b) Results
 - c) Conclusion
- 4. Quantification of dual-purpose performance
- 5. Dual-Purpose Index
- 6. Summary

Status of chick culling in Europe

Layer strain

Selection based on egg production, egg quality traits

Progeny

Fertilized eggs

© Photo / Wikipedia

Chicks

© Photo / Wikipedia

© Photo / Pluschke

Alternative strategies

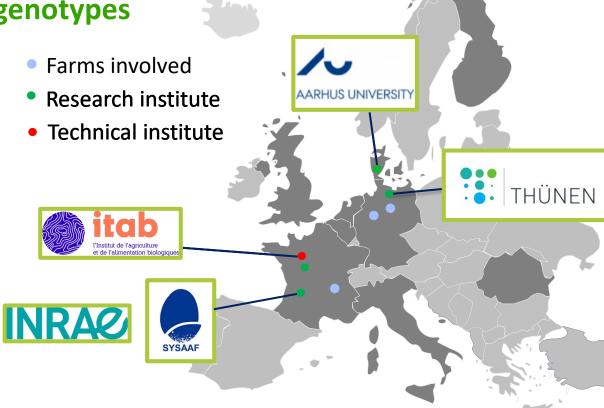
FR: Article R214-17

- From 1/1/2023 : all hatcheries must be equipped with operational material to avoid the culling of male chicks
 - -> Special case when it is not possible to comply with the decree

DE: Article TierSchtG Art. 1 § 4c

• From 1/1/2022: makes it a punishable offence to kill a vertebrate animal "without reasonable cause" (unprofitability) or to cause it suffering and pain

- 1. fattening of males of layer lines
- 2. In-ovo sexing
- 3. dual-purpose poultry


What is dual-purpose poultry?

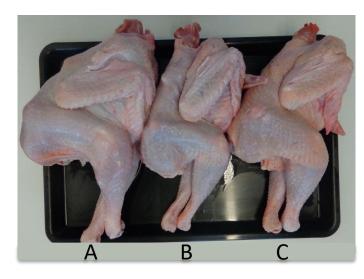
- To date, only **few scientific** publications on dual-purpose poultry under **experimental and organic conditions** (Torres et al., 2019; Muth et al., 2019; Baldinger and Bussemas, 2021; Tiemann et al., 2020)
 - → Available data are less valid than for high-performance hybrids
- Higher welfare in dual-purpose poultry (Tiemann et al., 2020; Giersberg et al., 2019; Daş et al., 2021)
- Higher FCR but more **frugal** in nutrient requirements (Urban et al., 2017; Röhe et al., 2019; Kreuzer et al., 2019)
 - → resource-saving diets/optimization of feeding strategy
- High robustness and adaptability in free-range and extensive systems (Castellini et al., 2016)
- Term 'dual-purpose poultry' **not defined** (Gebhardt et al., 2023)
- Evaluation of females and males as unit not described (Werner et al., 2023; Ibrahim et al., 2019)

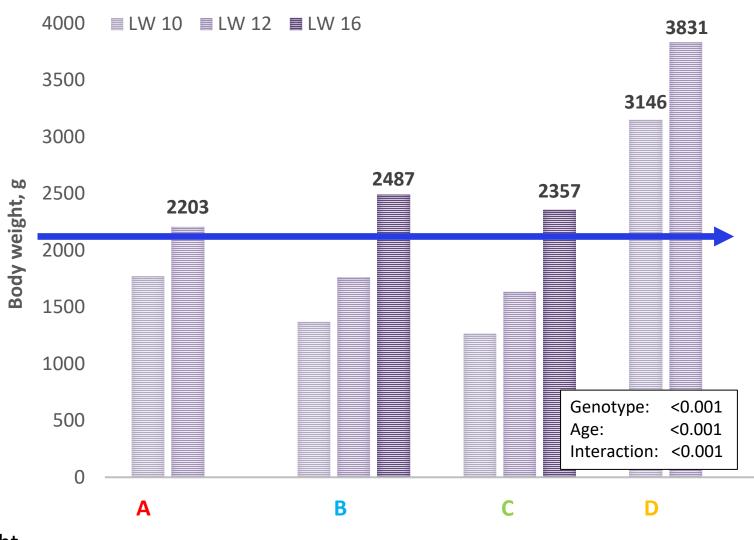
PPILOW Partners: trials of dual-purpose genotypes

- Cooperation with breeding companies to select three novel genotypes suitable as dualpurpose poultry
- On-station trials in three different countries to evaluate performance, welfare, behaviour and product quality under organic conditions
- Economic analysis
- Close partnership with national practitioner groups to discuss results and select mostpromising genotype for on-farm trials

→ Data presented here refer to the German on-station trials

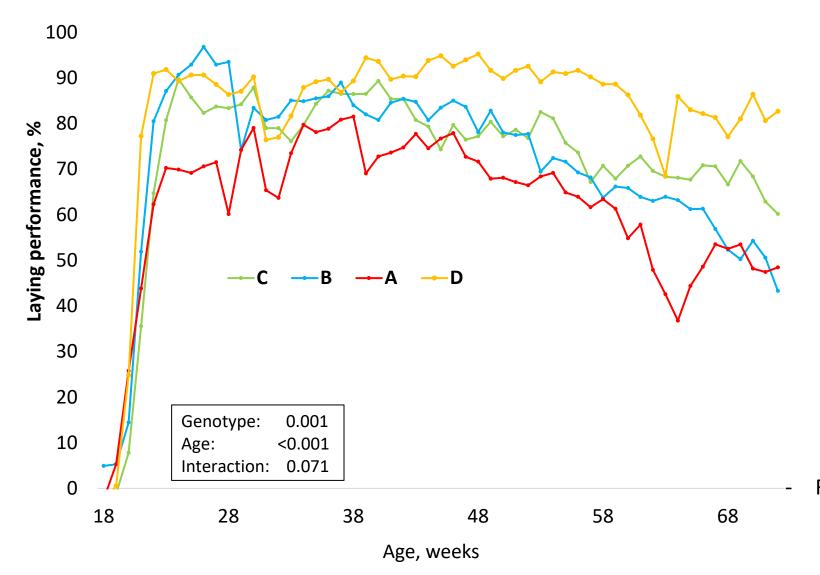
PPILOW German on-station trials / Materials & Methods

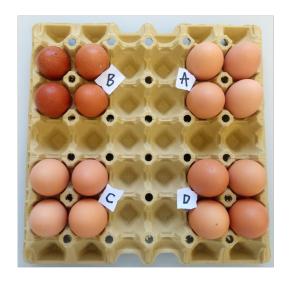




PPILOW German on-station trials / Results – MEAT

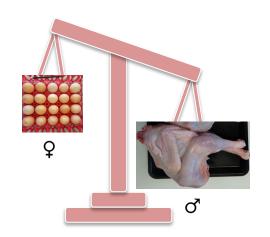
Genotype	Daily weight gain, g d ⁻¹		
Α	26.1 ^b		
В	22.1 ^c		
С	21.3 ^c		
D	42.9ª		

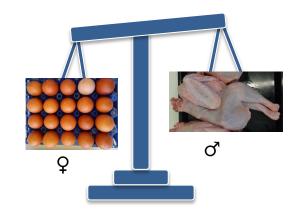

- Range in DWG: C < B < A < D
- Slower growth requires longer fattening period to reach target weight



PPILOW German on-station trials / Results – EGGS

Genotype	Laying performance, %		
Α	61.8 ^b		
В	71.2 ^b		
С	72.3 ^{ab}		
D	82.9 ^a		

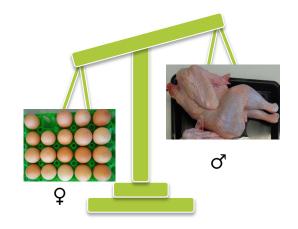

Range in laying performance: A < B < C < D



PPILOW German on-station trials / Conclusions

Genotype A:

performance profile of this crossbreed is orientated towards its sire line, emphasised on **meat** and shows higher gains on the male side and lower laying on the female side



Genotype B:

performance profile of this purebreed is orientated more towards egg than meat production

Genotype C:

performance profile of this crossbreed is orientated towards its dam line, emphasised on **laying** and shows only slight gains on the male side

Quantification of dual-purpose performance?

Joint economic evaluation?

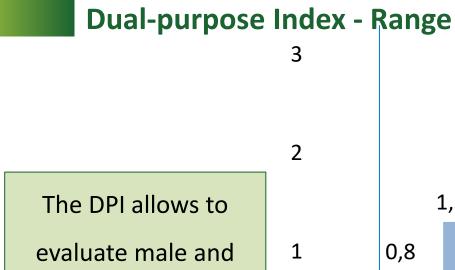
→ imbalance due to level of returns

Joint performance evaluation?

ie. laying performance 82 % vs daily weight gain 45 g d-1

→ imbalance due to different type of data

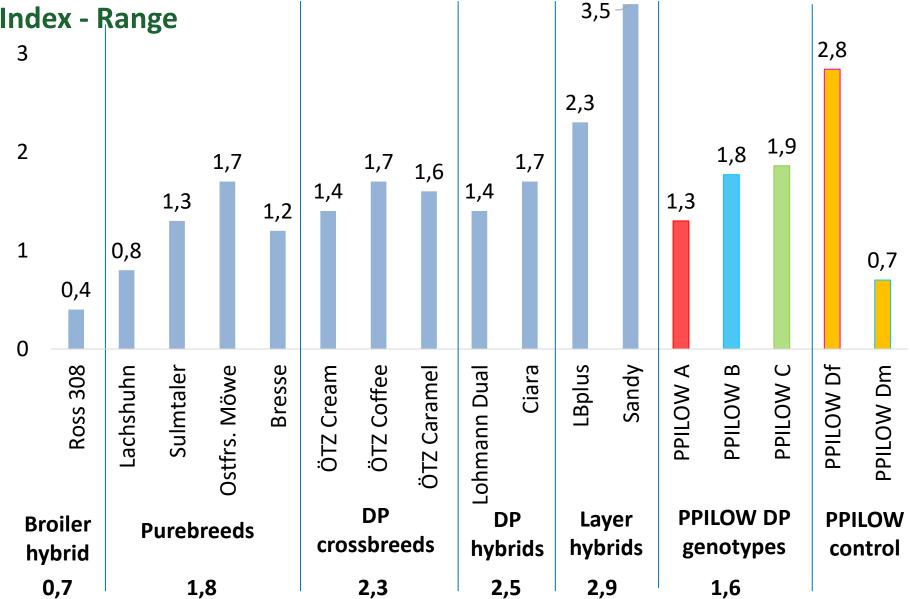
Quantification of dual-purpose performance


→ Dual-purpose Index (DPI)*

- 1. Laying performance of the female of a dual-purpose genotype is expressed as a proportion of a commercial layer
- 2. Daily weight gain of the male of a dual-purpose genotype is expressed as a proportion of a commercial broiler
- 3. Proportional laying performance is then divided by proportional fattening performance

Genotype	Laying performance, %		Daily weight gain, g d ⁻¹	DPI	
А	61.8 / 82.0	:	26.1 / 45.0	1.30	
В	71.2 / 82.0	:	22.1 / 45.0	1.77	
С	72.3 / 82.0	:	21.3 / 45.0	1.86	
Dfemale	82.9 / 82.0	:	16.0 / 45.0	2.84	
Dmale	54.8* / 82.0	:	42.9 / 45.0	0.70	

^{*} According to Breeder Mangement Guide, 40 weeks

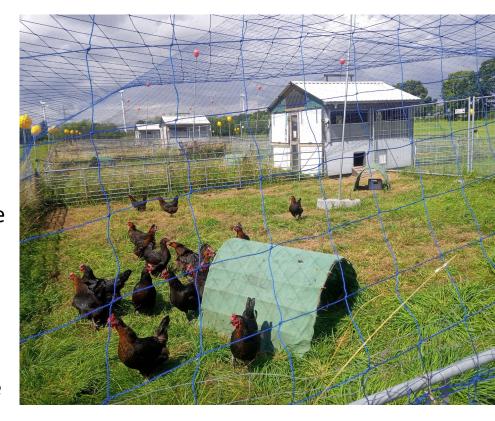


female as a unit and

to better differentiate

the suitability.

Summary


→ Performance of novel dual-purpose poultry genotypes varies depending on genetic selection employed!

→ Potential:

→ DPI as coefficient in economic analysis, breeding selection, management decisions etc.

→ Limitations:

- → Methods outlined are only a first step in assessing the dual-purpose nature of poultry genotypes
- → No limits have yet been set: 'dual-purpose' needs to be defined more precisely
- → Clear distinction between single-purpose and dual-purpose use
- → DPI is a contribution to ongoing discussion on definition of dual-purpose poultry
- > Further research is needed to optimize the management of dual-purpose poultry

PPILOW PARTNERS

Thank you to the partners involved:

Petra Thobe (Thünen)
Sarah Lombard (ITAB)
Maxime Reverchon (SYSAAF)
Sanna Steenfeldt (AU)
Karine Germain (INRAE)
Daniela Werner (Thünen)
Anne Collin (INRAE)

& PPILOW National Practitioner Groups

Contact: h.pluschke@thuenen.de

Thank you for your attention! For more information, check out www.ppilow.eu

Bibliography

Baldinger, L.; Bussemas, R. (2020): Dual-purpose production of eggs and meat – Part 2: hens of crosses between layer and meat breeds show moderate laying performance but choose feed with less protein than a layer hybrid, indicating the potential to reduce protein in diets. Organic Agriculture 11(1), 73–87. DOI: 10.1007/s13165-020-00328-w.

Baldinger, L; Bussemas, R (2021): Dual-purpose production of eggs and meat — Part 1: cockerels of crosses between layer and meat breeds achieve moderate growth rates while showing unimpaired animal welfare. Organic Agriculture 11(3), 489–498. DOI: 10.1007/s13165-021-00357-z.

Castellini, C.; Mugnai, C.; Moscati, L.; Mattioli, S.; Amato, M.G.; Mancinelli, A.C.; Dal Bosco, A. (2016) Adaptation to organic rearing system of eight different chicken genotypes: Behaviour, welfare and performance. Journal of Animal Science 15, 37–46.

Daş, G; Auerbach, M; Stehr, M; Sürie, C; Metges, CC.; Gauly, M; Rautenschlein, S. (2021) Impact of Nematode Infections on Non-specific and Vaccine-Induced Humoral Immunity in Dual-Purpose or Layer-Type Chicken Genotypes. Frontiers in veterinary science 8. DOI: 10.3389/fvets.2021. 659959.

Gebhardt, B.; Bermejo Dominguez, G.; Imort-Just, A.; Kiefer, L. (2023) Zweinutzungshühner - Mehrdeutiger geht nicht. 16. Wissenschaftstagung Ökologischer Landbau, Frick.

Giersberg, MF; Spindler, B; Rodenburg, B; Kemper, N (2019) The Dual-Purpose Hen as a Chance: Avoiding Injurious Pecking in Modern Laying Hen Husbandry. Animals: an open access journal from MDPI 10(1). DOI: 10.3390/ani10010016.

Ibrahim, D.; Goshu, G.; Esatu, W.; Cahaner, A. (2019) Dual-purpose production of genetically different chicken crossbreeds in Ethiopia. 2. Egg and meat production of the final-crossbreed females and males, Poultry Science, 98:3405-3417.

Kreuzer, M.; Müller, S.; Mazzolini, L.; Messikommer, R. E.; Gangnat, I. D. M. (2020) Are dual-purpose and male layer chickens more resilient against a low-protein-low-soybean diet than slow-growing broilers? British Poultry Science 61(1), 33–42. DOI: 10.1080/00071668.2019.1671957.

Muth, Philipp C.; Ghaziani, Shahin; Klaiber, Iris; Valle Zárate, Anne (2018) Are carcass and meat quality of male dual-purpose chickens competitive compared to slow-growing broilers reared under a welfare-enhanced organic system? Organic Agriculture 8(1), 57–68. DOI: 10.1007/s13165-016-0173-3.

Röhe, I.; Urban, J.; Dijkslag, A.; Te, PJ; Zentek, J. (2019) Impact of an energy- and nutrient-reduced diet containing 10% lignocellulose on animal performance, body composition and egg quality of dual purpose laying hens. Archives of Animal Nutrition 73(1), 1–17. DOI: 10.1080/1745039X.2018.1551950.

Tiemann, I; Hillemacher, S; Wittmann, M (2020) Are Dual-Purpose Chickens Twice as Good? Measuring Performance and Animal Welfare throughout the Fattening Period. Animals: an open access journal from MDPI 10(11). DOI: 10.3390/ani10111980.

Torres, A; Muth, P.; Capote, J; Rodríguez, C; Fresno, M; Valle Zárate, A (2019) Suitability of dual-purpose cockerels of 3 different genetic origins for fattening under free-range conditions. Poultry Science 98(12), 6564–6571. DOI: 10.3382/ps/pez429.

Urban, J; Röhe, I; Zentek, J. (2018) Effect of protein restriction on performance, nutrient digestibility and whole body composition of male Lohmann Dual chickens. European Poultry Science 82. DOI: 10.1399/eps.2018.221.

Werner, D.; Bussemas, R.; Baldinger, L. (2023) Crossing the Old Local Breed Deutsches Lachshuhn with the Layer Breed White Rock: Effects on Laying Performance of the Females and Fattening Performance of the .Males. Animals 13, 2999. DOI: 10.3390/ani13192999.

