

N, P and C efficient use and circularity in dairy farms in New Zealand

John Roche,

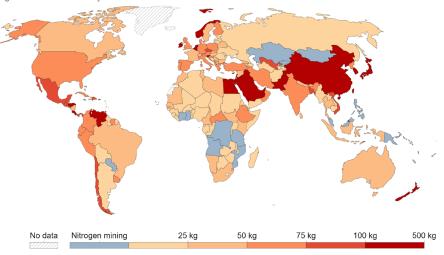
¹Chief Science Adviser, & Director, On-Farm support, Ministry for Primary Industries, New Zealand

²University of Auckland, New Zealand

The 75th European Federation of Animal Sciences (EAAP) Annual Meeting, Florence, Italy.

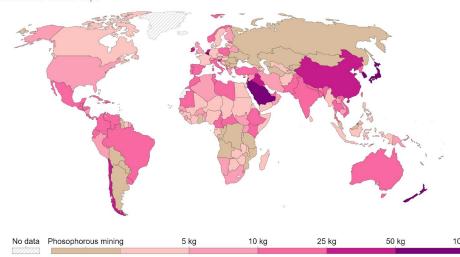
"Eliminate the very concept of waste, not reduce, minimize or avoid waste, but eliminate the very concept by design"

- Prof. Michael Braungart



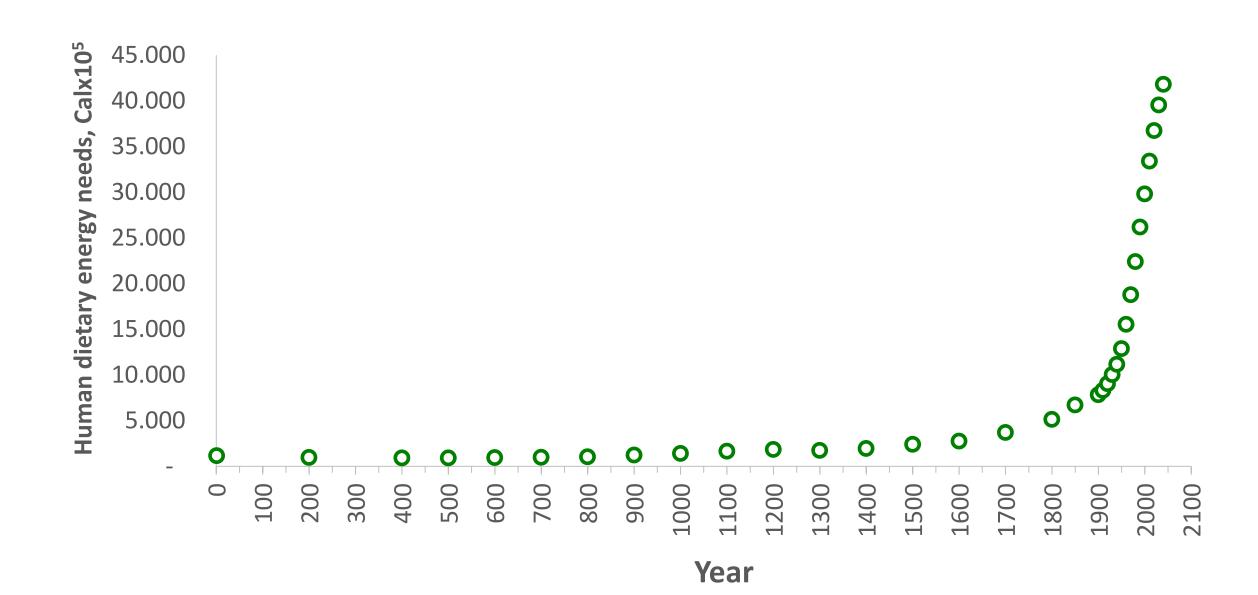
Excess nitrogen per hectare of cropland

"Excess nitrogen" is the difference between nutrient inputs (from fertilizers, manure, and fixation from legumes) and the amount harvested in crop material. This represents nitrogen that is lost to the environment and can create ecological imbalances in ecosystems and water bodies.

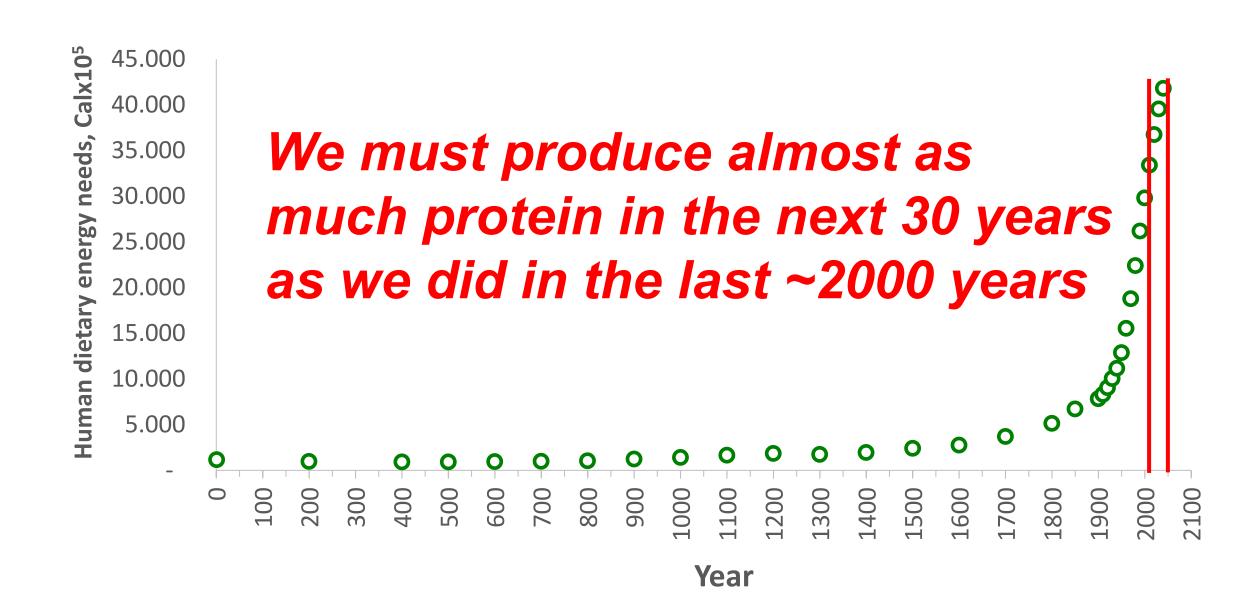


Source: West, Gerber, Engstrom, Mueller, Brauman, Carlson, Cassidy, Johnston, MacDonald, Ray & Siebert (2014). Leverage points for improving global food security and the environment. <>Science</i>
OurWorldInData.org/fertilizers • CC BY

Excess phosphorous per hectare of cropland

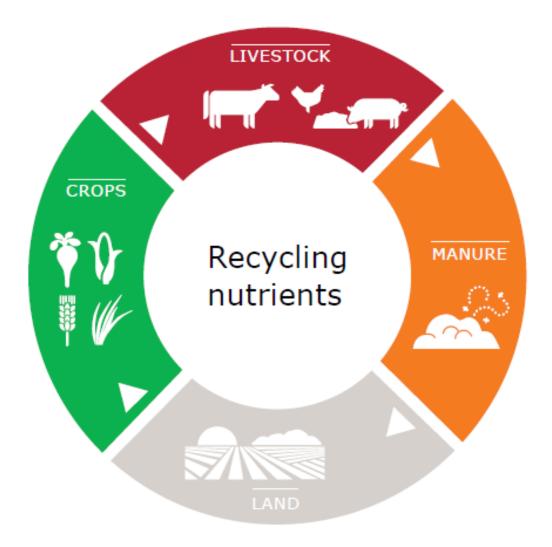


Amount of excess phosphorous per hectare of cropland. This is the difference between phosphorous inputs, and the amount harvested in crops.



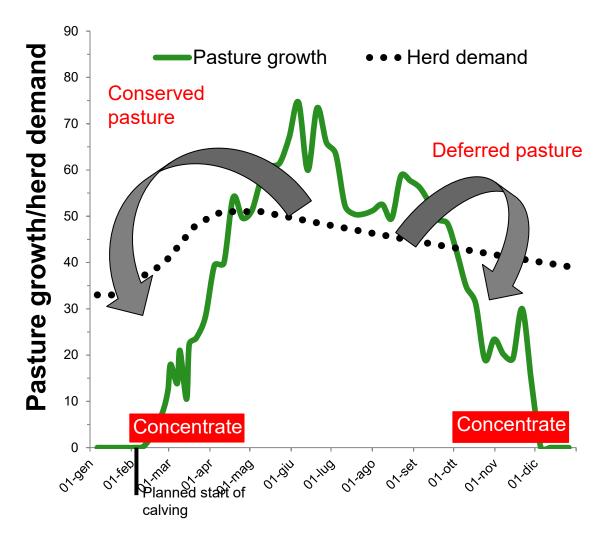
Source: West, Gerber, Engstrom, Mueller, Brauman, Carlson, Cassidy, Johnston, MacDonald, Ray & Siebert (2014). Leverage points for improving global food security and the environment. <> Science </i>
CurWorldInData.org/fertilizers • CC BY

Humanity has a massive challenge

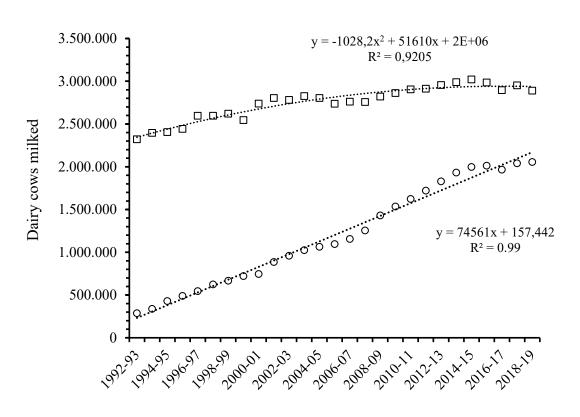

Humanity has a massive challenge

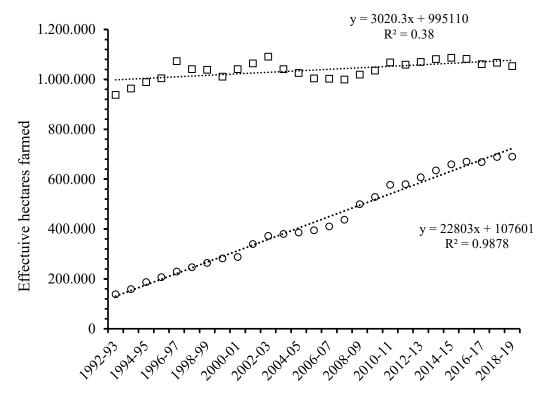
Circularity in agriculture

feed the world while preserving the environment by closing nutrient cycles (De Boer and Van Ittersum, 2018)


- Arable land feeds humans;
- Non-arable land (65-70% of world's agricultural land) feeds herbivores;
- Biomass unsuited to feed humans feeds animals (to feed humans);
- Biomass unsuited to feed animals fertilises the soil.

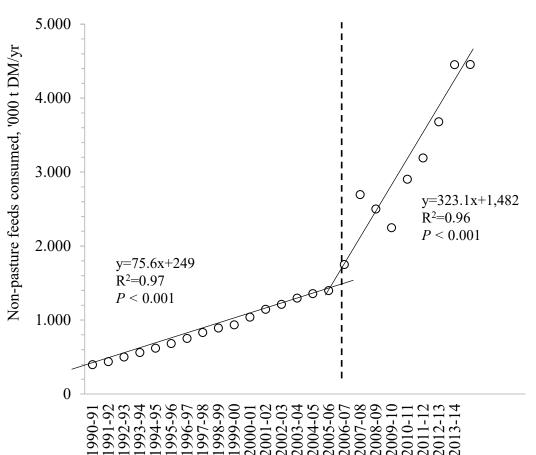
Source: Hoes et al. 2019. Towards sustainable food systems – a Dutch approach. Wageningen University & Research


Pasture-based systems


- Utilise feed indigestible to humans to produce high quality protein;
 - Requires Phosphorus, Potassium, Lime, as inputs;
 - Utilises land not suitable for crop;
 - Utilises waste biomass (co-products, silage/hay, root crops, in situ).
- Very close to Circular.

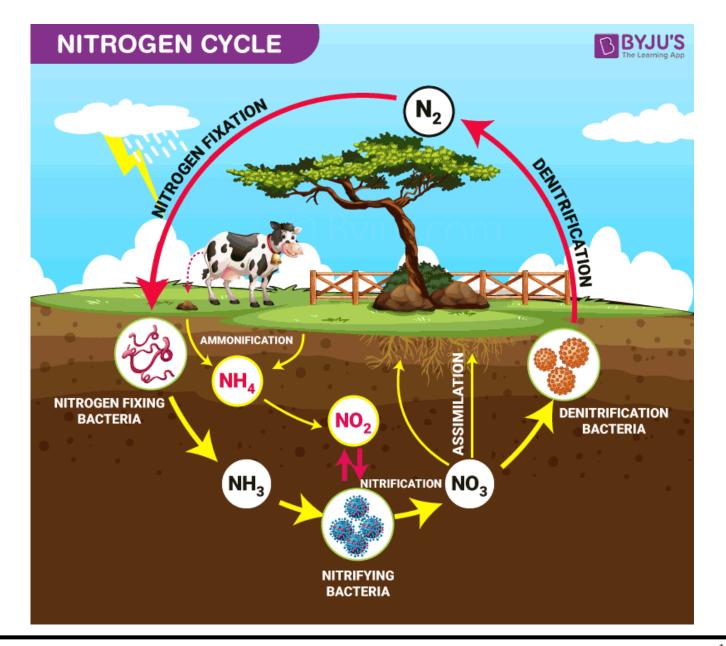
Roche et al. 2017. Seasonal pasture-based dairy production systems. Large Dairy Herd Management, 3rd Ed. pp. 99-114.

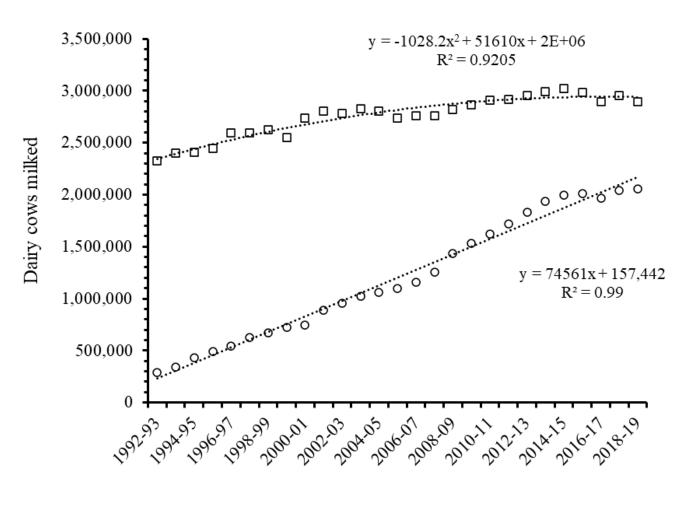
100% more cows on 70% more land



□ North Island ○ South Island

□ North Island ○ South Island


Exponential increase in feed inputs nationally



Nitrogen

- Est. ~50% of world's food is from N from fertilizer;
- No shortage of nitrogen;
 - 78% of atmosphere.
- High <u>energy demand</u> for atm nitrogen fixation;
 - Managing C footprint
- Loss of nitrogen from productive systems;
 - Managing river, lake and estuarine water quality

□ North Island ○ South Island

Hydrol. Earth Syst. Sci., 21, 1149–1171, 2017 www.hydrol-earth-syst-sci.net/21/1149/2017/ doi:10.5194/hess-21-1149-2017 © Author(s) 2017. CC Attribution 3.0 License.

River water quality changes in New Zealand over 26 years: response to land use intensity

Jason P. Julian^{1,5}, Kirsten M. de Beurs^{2,5}, Braden Owsley^{2,5}, Robert J. Davies-Colley³, and Anne-Gaelle E. Ausseil⁴

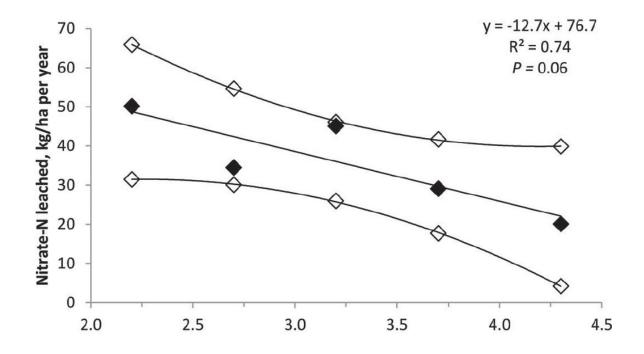
Water quality – 1990-2015

- Total N ↑ 42%
- Oxidised N ↑ 35%
- Conductivity ↑ 67%
- Primarily lowland waterways;
- Intensively managed grassland;
- $R^2 = 62\%$ with dairy cattle.

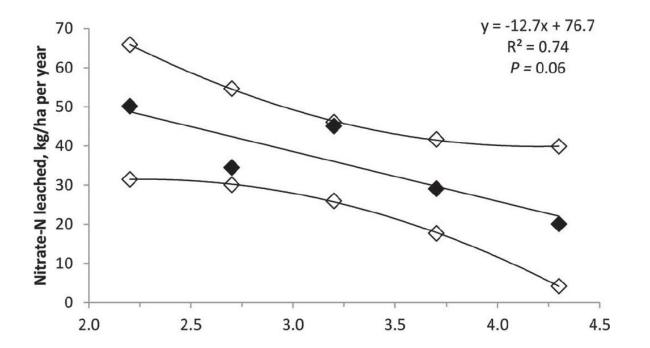
Department of Geography, Texas State University, San Marcos, TX, USA

²Department of Geography and Environmental Sustainability, The University of Oklahoma, Norman, OK, USA

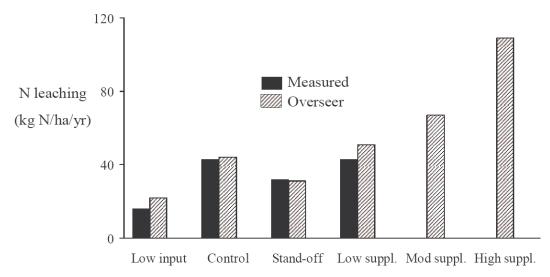
³National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand


⁴Landcare Research, Palmerston North, New Zealand

⁵Landscape & Land Use Change Institute (LLUCI), University of Oklahoma and Texas State University, Oklahoma, Texas, USA


Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing

J. R. Roche,*¹ S. F. Ledgard,† M. S. Sprosen,† S. B. Lindsey,† J. W. Penno,*² B. Horan,‡ and K. A. Macdonald*
*DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand
†AgResearch, Private Bag 3123, Hamilton 3240, New Zealand
‡Teagasc Moorepark, Fermoy, Co. Cork, Ireland P61 P302


Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing

J. R. Roche,*¹ S. F. Ledgard,† M. S. Sprosen,† S. B. Lindsey,† J. W. Penno,*² B. Horan,‡ and K. A. Macdonald* *DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand †AgResearch, Private Bag 3123, Hamilton 3240, New Zealand ‡Teagasc Moorepark, Fermoy, Co. Cork, Ireland P61 P302

NITROGEN LEACHING AS AFFECTED BY DAIRY INTENSIFICATION AND MITIGATION PRACTICES IN THE RESOURCE EFFICIENT DAIRYING (RED) TRIAL

Stewart Ledgard¹, Mike Sprosen¹, Amanda Judge¹, Stuart Lindsey¹, Rodger Jensen², Dave Clark² and Jiafa Luo¹

Figure 2. Average annual N leaching (measured and predicted using overseer model) from dairy farmlets.

¹AgResearch Ruakura Research Centre, Hamilton, New Zealand

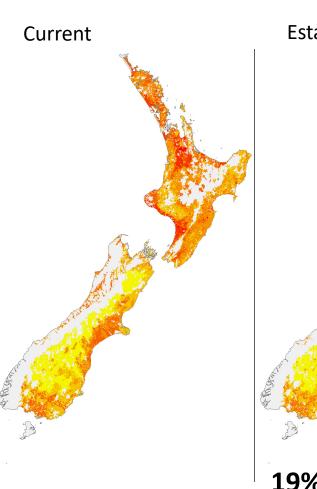
² Dexcel, Hamilton, New Zealand

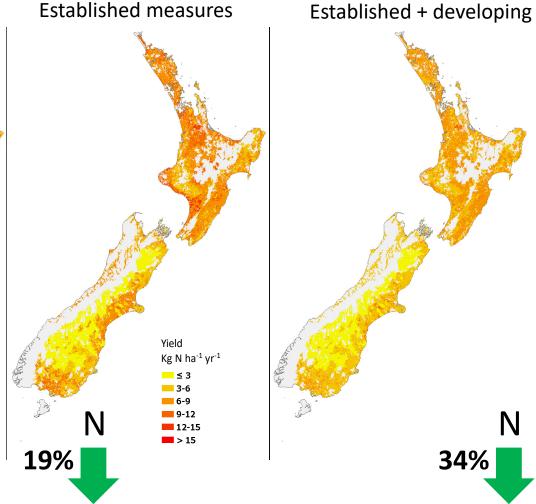
Mitigations

Recognising that most N loss is via urine patch during sensitive months.

- N fertilizer limited to 190kg/ha;
- Reducing N surplus in diet during sensitive months;
- Low N supplements and crops;
- Variable rate irrigation;
- Constructed wetlands in flow pathways;

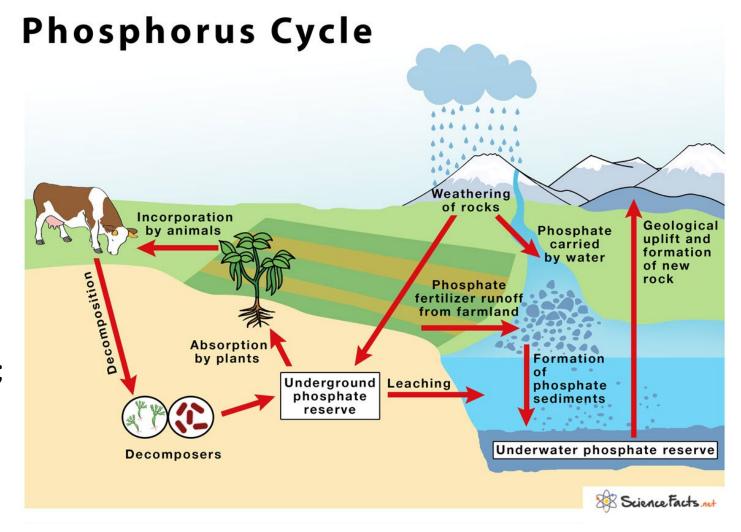
New Zealand Journal of Agricultural Research

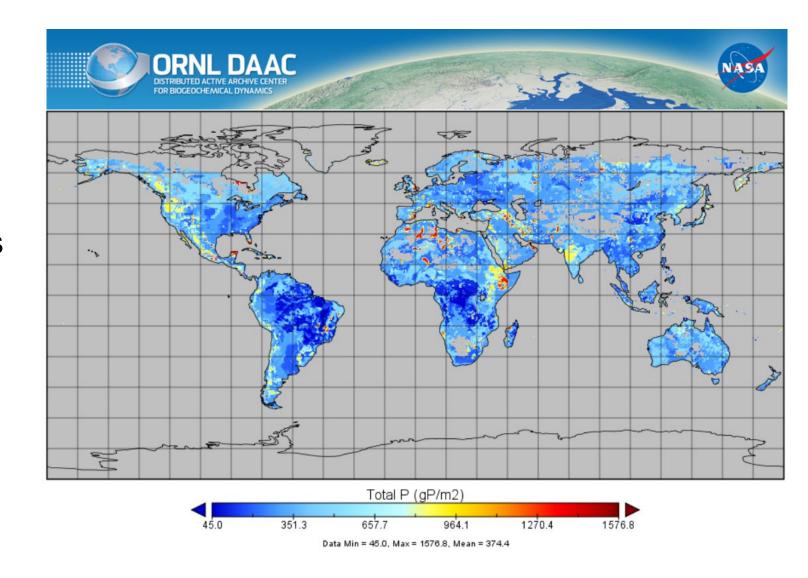

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tnza20


What could we achieve by 2035?

Quantifying contaminant losses to water from pastoral land uses in New Zealand III. What could be achieved by 2035?

Richard W. McDowell, Ross M. Monaghan, Chris Smith, Andrew Manderson, Les Basher, David F. Burger, Seth Laurenson, Peter Pletnyakov, Raphael Spiekermann & Craig Depree




Phosphorus

- Essential element for biological systems;
- Cannot be created or destroyed;
- Geographical availability;
 - ~70-80% in Western Sahara.
- <u>Limited availability</u> but essential (concern about peak P);
- Loss of phosphorus from productive systems;
 - Managing river, lake and estuarine water quality

Phosphorus sources

- Limited phosphorus stores
 - ~300-500 billion tonnes
- Geographically isolated
 - NW Africa (70%)
 - Middle East
 - Mexico

https://doi.org/10.1038/s43016-024-00952-9

Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves

Received: 7 March 2023

Accepted: 29 February 2024

Published online: 25 March 2024

Check for updates

R. W. McDowell D 1.2 M, P. Pletnyakov D 2 & P. M. Haygarth D 2

With the longevity of phosphorus reserves uncertain, distributing phosphorus to meet food production needs is a global challenge. Here we match plant-available soil Olsen phosphorus concentrations to thresholds for optimal productivity of improved grassland and 28 of the world's most widely grown and valuable crops. We find more land (73%) below optimal production thresholds than above. We calculate that an Initial capital application of 56,954 kt could boost soil Olsen phosphorus to their threshold concentrations and that 28.067 kt vr⁻¹(17.500 kt vr⁻¹to cropland) could maintain these thresholds. Without additional reserves becoming available, it would take 454 years at the current rate of application (20.500 kt vr⁻¹) to exhaust estimated reserves (2020 value), compared with 531 years at our estimated maintenance rate and 469 years if phosphorus deficits were alleviated. More judicious use of phosphorus fertilizers to account for soil Olsen phosphorus can help achieve optimal production without accelerating the depletion of phosphorus reserves.

Human existence over the past century has depended on the production redistributed, but the efficiency gain may still not meet crop and food of phosphorus fertilizer and its application to agricultural soils to drive food production¹. Phosphorus fertilizer production relies on geologic trations, especially in some Jurisdictions such as China and Europe, rock phosphorus supplies extracted from mines at relatively few locations and requires transportation and distribution before application to farmlands worldwide. The global population is projected to increase to nearly 10 billion people by 20502. It has been projected that feeding this increased population will require an additional 500 million hectares of arable land unless phosphorus can be more efficiently used to boost or maintain optimal crop yields3. Most of this efficiency will be created by local management solutions that apply phosphorus fertilizers only where they are needed and by making better use of available soil phosphorus concentrations

To boost crop yields, we must close the gap between actual and potential yields with more judicious application of fertilizer to match available soil phosphorus concentrations and crop demands⁵. Global estimates put the overapplication of phosphorus fertilizers at 30-40%

demands⁸. Redistribution and the lowering of soil phosphorus concenwill also help avoid the risk of surface water quality deterioriation? However, the spatial distribution of soil phosphorus concentrations is uncertain. Previous work has modelled the spatial distribution of available soil phosphorus concentrations and stocks in Africa and Europe 10,11. Estimates of concentrations and stocks have also been made at a global level, but these are of total phosphorus, not plant-available phosphorus in agricultural soils 12,13. Additional estimates of phosphorus flows have been derived by mass balance models that consider factors such as plant uptake, weathering and global lithology data^{3,H-17}, but again these do not estimate plant-available phosphorus.

Accurate knowledge of where crops are grown and the available soil phosphorus concentration of those soils is a key step in reducing yield gaps and making optimal use of phosphorus fertilizer reserves. Recent work has updated and improved the sparelative to crop and grassland requirements 57. Some of this can be tial resolution of the major crops, rangeland, improved grassland

332

Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand. JAGResearch, Lincoln Science Centre, Christchurch, New Zealand. ³Lancaster Environment Centre, Lancaster University, Lancaster, UK, 🖂 e-mail: richard, modowell@agresearch.co.nz

Nature Food | Volume 5 | April 2024 | 332-339

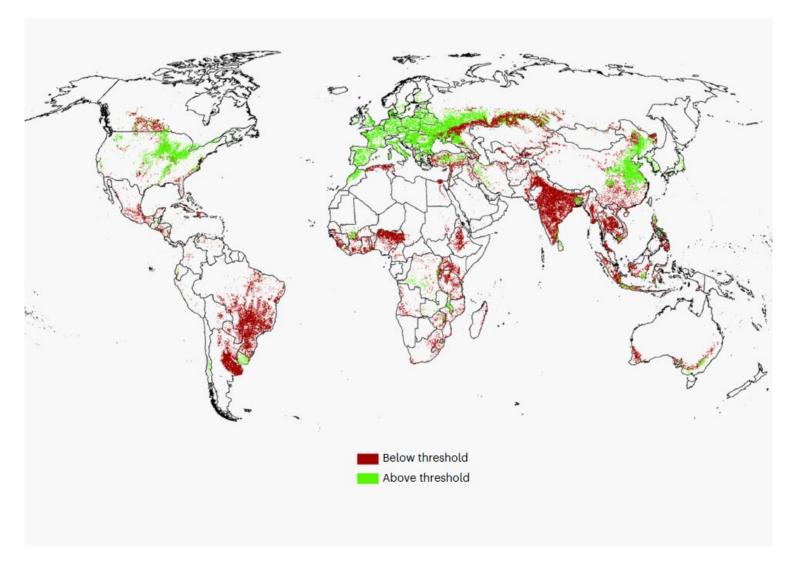


Figure 1. The global distribution of land area planted with rice, soybeans, maize, wheat, rye, barley, oranges or apples above or below their agronomic threshold of 15 mg kg-1 required for optimum production

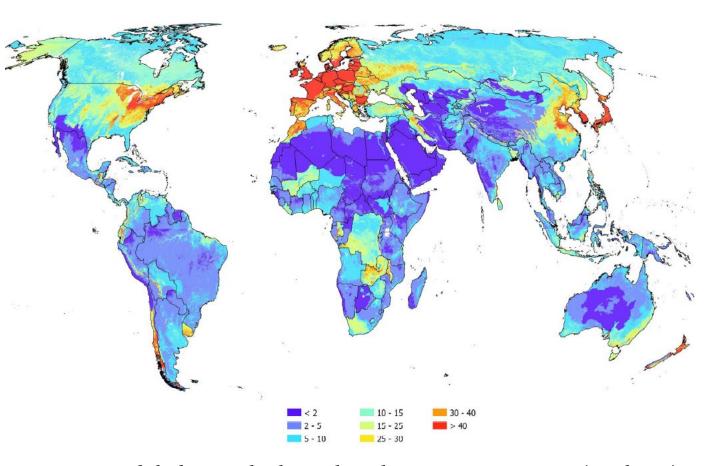
scientific data

OPEN A Global Database of Soil Plant DATA DESCRIPTOR Available Phosphorus

R. W. McDowell 1,2 M, A. Noble 1, P. Pletnyakov & P. M. Haygarth 13

Soil phosphorus drives food production that is needed to feed a growing global population. However, knowledge of plant available phosphorus stocks at a global scale is poor but needed to better match phosphorus fertiliser supply to crop demand. We collated, checked, converted, and filtered a database of c. 575,000 soil samples to c. 33,000 soil samples of soil Olsen phosphorus concentrations. These data represent the most up-to-date repository of freely available data for plant available phosphorus at a global scale. We used these data to derive a model (R2 = 0.54) of topsoil Olsen phosphorus concentrations that when combined with data on bulk density predicted the distribution and global stock of soil Olsen phosphorus. We expect that these data can be used to not only show where plant available P should be boosted, but also where it can be drawn down to make more efficient use of fertiliser phosphorus and to minimise likely phosphorus loss and degradation of water quality.

Background & Summary


Soil phosphorus drives food production required to feed an increasing global population that is projected to reach 10 billion people by 2050¹. It has been estimated that an additional 500 million hectares of arable land will be required to feed this increased population unless phosphorus can be either better utilised by plants or applied more efficiently². Much of this efficiency will arise from local management solutions that only apply phosphorus fertilisers where they are needed. However, knowledge of plant-available soil phosphorus stocks is poor, globally. Some estimates have been made of global soil total phosphorus but only considers soils in their natural state,

that is without the addition of fertilisers 45. Similarly, regional estimates exist of plant available soil phosphorus stocks using measured data 6-8. However, global estimates of plant available soil phosphorus stocks using measured data do not exist. Instead, global stocks have been estimated using models of factors such as plant uptake, weathering and global lithology data 9-12 or via mass balance approaches 2,13. It is important to know where available soil phosphorus concentrations are adequate or deficient for optimal crop growth. This knowledge enables us to better match phosphorus fertiliser supply to crop demand and to suggest where excess plant available soil phosphorus can be drawn down 11,14. Here we present the first global database of freely available data on plant available soil phosphorus concentrations and use these data to create a global map and calculate the global stocks of plant available soil phosphorus stocks. We chose bicarbonate-extractable Olsen phosphorus 15 as the measure of plant available soil phosphorus as it is the most widely used form, globally.

Data filtering and evaluation. Data (n = 574,375) of available soil phosphorus were obtained from 19 regional or global databases and published studies. These were chosen for their geographic spread and representativeness of a mix of developed and developing nations and where there was a clear process in place to ensure that data were of good quality (Table 1). Prior to modelling the data to estimate global Olsen phosphorus stocks, we adopted a multi-step process (Fig. 1) to produce a globally consistent dataset. The steps comprised (1) inspecting the data and filtering it for consistent analytical methods, units, and a limit of detection (set as 2 mg kg-1); (2) filtering data to remove points lacking correct geo-referencing and those falling outside an acceptable time span (from 2000-2019); (3) converting values into Olsen phosphorus concentrations via established equations (Table 2), if necessary; and 4) filtering data to remove points from depths > 20 cm and eliminating any duplicate values.

Step 1 Inspect data. When examining data, we determined that the soil extraction method was recorded, and that the phosphorus extraction relied on acceptable procedures. Measurements of phosphorus based on molybdenum blue colorimetry or ion chromatography were considered comparable and acceptable. Measurements

AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand. Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, P.O. Box 84, 7647, Christchurch, New Zealand. *Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK, Me-mail: richard.mcdowell@agresearch.co.nz

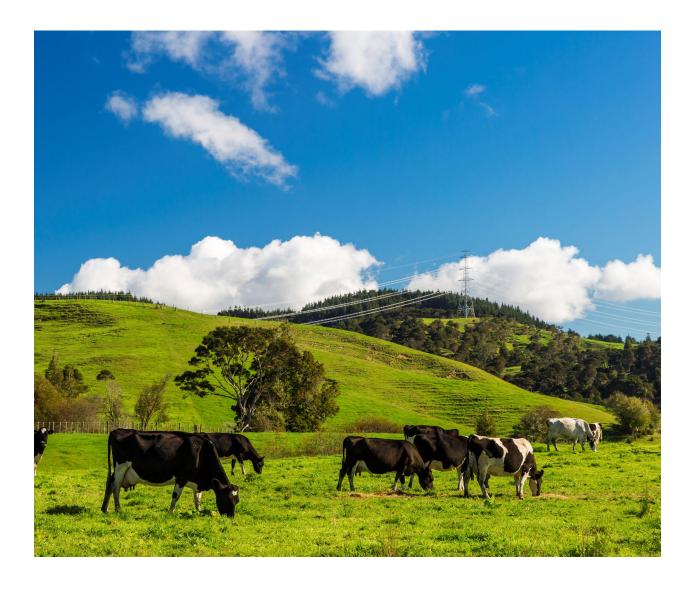


Fig. 3 Global topsoil Olsen phosphorus concentration (mg kg-1).

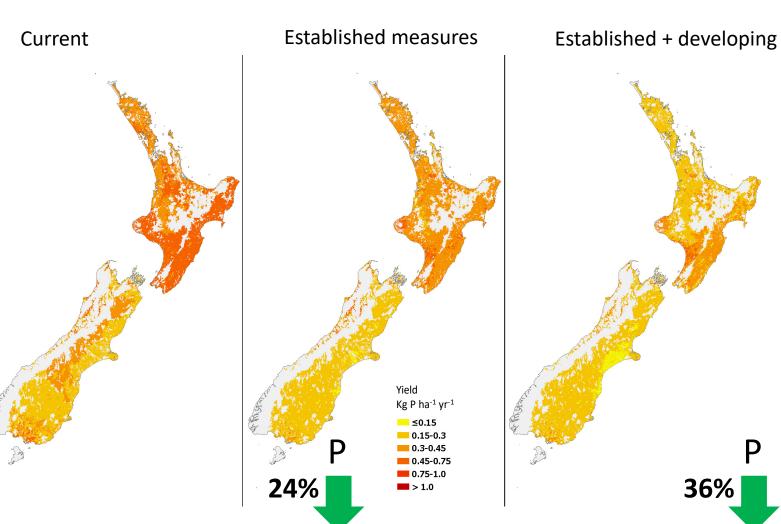
Mitigations

Recognising that P lost primarily through overland flow pathways.

- Fencing watercourses with setback;
- Riparian zones around waterbodies;
- Detention bunds in flow pathways;
- Constructed wetlands in flow pathways;

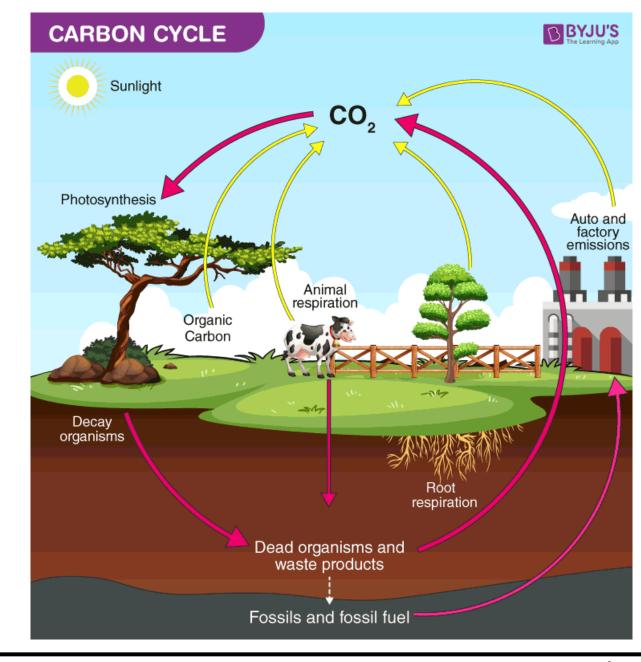
New Zealand Journal of Agricultural Research

What could we achieve by 2035?


36%

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tnza20

Quantifying contaminant losses to water from pastoral land uses in New Zealand III. What could be achieved by 2035?


Richard W. McDowell, Ross M. Monaghan, Chris Smith, Andrew Manderson, Les Basher, David F. Burger, Seth Laurenson, Peter Pletnyakov, Raphael Spiekermann & Craig Depree

Carbon

- C is constantly recycled between the atmosphere, plants, and animals;
- No shortage of C;
 - Problem is <u>increasing atmospheric</u> <u>concentrations</u>;
 - Ruminant animals produce <u>methane</u> (strong forcing effect);

Sustainability reporting an ongoing feature of trade requirements

At a glance: international climate & sustainability disclosure requirements

KEY: Mandatory CRD in force Mandatory CRD proposed

SECTION OVERVIEW

The global regulatory landscape with respect to ESG reporting is changing at pace. More than 60% of world GDP is now subject to mandatory climate-related disclosures (CRD) measures, either proposed or already in force. This page provides an at-a-glance overview of measures in key markets. These obligations could affect New Zealand companies directly, depending on in-market presence, or indirectly through the supply chain requirements of their customers in those countries. In addition, there is widespread uptake of voluntary reporting under initiatives such as the Task Force on Nature-related Financial Disclosures (TNFD).

UK & EUROPE

United Kingdom

- . Mandatory CRD (since 2022)
- Emissions reporting requirements
- Sustainability Disclosure Requirements (since 2023)
- Modern slavery reporting (since 2015)

European Union

- Corporate Sustainability Reporting Directive (from 2026)
- Corporate Sustainability Due Diligence Directive (likely from 2026)

ASIA PACIFIC

India

 Listed issuer ESG disclosures (phased in from 2022)

China

- Listed issuer ESG disclosures (from 2024)
- Emissions reporting requirements (various requirements since 2006)

Taiwan

- Emissions reporting requirements (since 2021)
- Listed issuer ESG
 disclosures (since 2023)

Hong Kong

- Listed issuer ESG disclosures (since 2023)
- CRD (from 2025)

Korea

- Emissions reporting (amended 2021)
- ESG disclosures (proposed from 2026)
 Human sights in supply shair
- Human rights in supply chain reporting (from 2024)

Japan

- Emissions reporting (since 2021)
- Listed issuer ESG disclosures (since 2021)
- Sustainability disclosures (proposed from 2025)

Singapor

- Emissions reporting (various requirements since 2012)
- Listed issuer ESG
- disclosures (since 2023) • CRD (from 2025)

Thailand

- Listed issuer ESG
- disclosures (since 2021)
 Emissions reporting (proposed 2024)

Vietnam

- Listed issuer ESG disclosures (since 2020)
- Emissions reporting (since 2022)

Malaysia

- Listed issuer ESG disclosures (since 2023)
- Enhanced CRD and sustainability disclosures (proposed from 2025)

Indonesia

- Listed issuer ESG
 disclosures (since 2022)
- Environmental and ESG planning (since 2012)

Philippines

 Listed issuer ESG disclosures (from 2025)

AUSTRALIA

- CRD (proposed from 2025)
 Modern slavery reporting
- (since 2018)

 Emissions reporting requirements (since 2007)

NORTH AMERICA

United States

- CRD (rule finalised in 2024; currently on hold)
- California Climate
 Accountability Package,
 including emissions
 reporting, CRD and
 carbon offset disclosures
 (from 2026)

 New York (proposed) and California (since 2010) supply chain due diligence requirements

Canada

- CRD for financial institutions (from 2024)
- Sustainability disclosures (from 2025)
- Human rights supply chain reporting (from 2024)

Source: Chapman Tripp Report for The Aotearoa Circle – April 2024

Sustainability reporting an ongoing feature of

At a glance: international climate 8 disclosure requirements

KEY:

Mandatory CRD in force

Mandatory CRD proposed

SECTION OVERVIEW

The global regulatory landscape with respect to ESG reporting is changing at pace. More than 60% of world GDP is now subject to mandatory climate-related disclosures (CRD) measures, either proposed or already in force. This page provides an at-a-glance overview of measures in key markets. These obligations could affect New Zealand companies directly, depending on in-market presence, or indirectly through the supply chain requirements of their customers in those countries. In addition, there is widespread uptake of voluntary reporting under initiatives such as the Task Force on Nature-related Financial Disclosures (TNFD).

trade requiremen More than 60% of the world's **GDP** is now subject to mandatory climate-related disclosures

UK & EUROPE

United Kingdom

- Mandatory CRD (since 2022)
- · Emissions reporting requirements
- · Sustainability Disclosure Requirements (since 2023)
- · Modern slavery reporting (since 2015)

European Union

- · Corporate Sustainability Reporting Directive (from 2026)
- Corporate Sustainability Due Diligence Directive (likely from 2026)

ASIA PACIFIC

· Listed issuer ESG disclosures (phased in from 2022)

- Listed issuer ESG disclosures (from 2024)
- Emissions reporting requirements (various requirements since 2006)

Taiwan

- · Emissions reporting requirements (since 2021)
- Listed issuer ESG disclosures (since 2023)

Hong Kong

- · Listed issuer ESG disclosures (since 2023)
- CRD (from 2025)

Korea

- · Emissions reporting (amended 2021)
- ESG disclosures (proposed from 2026)
- · Human rights in supply chain reporting (from 2024)

- · Emissions reporting (since 2021)
- Listed issuer ESG disclosures (since 2021)
- · Sustainability disclosures (proposed from 2025)

- · Emissions reporting (various
- requirements since 2012) Listed issuer ESG
- disclosures (since 2023) CRD (from 2025)

Thailand

- Listed issuer ESG
- disclosures (since 2021) Emissions reporting (proposed 2024)

Vietnam

- Listed issuer ESG disclosures (since 2020)
- · Emissions reporting (since 2022)

Malaysia

- · Listed issuer ESG disclosures (since 2023)
- Enhanced CRD and sustainability disclosures (proposed from 2025)

- Indonesia Listed issuer ESG
- disclosures (since 2022) · Environmental and ESG planning (since 2012)

· Listed issuer ESG disclosures (from 2025)

AUSTRALIA

- CRD (proposed from 2025) · Modern slavery reporting
- (since 2018) · Emissions reporting requirements (since 2007)

NORTH AMERICA

- United States
- . CRD (rule finalised in 2024)
- currently on hold) · California Climate Accountability Package, including emissions reporting, CRD and carbon offset disclosures (from 2026)

· New York (proposed) and California (since 2010) supply chain due diligence requirements

Canada

- · CRD for financial institutions (from 2024)
- · Sustainability disclosures (from 2025)
- · Human rights supply chain reporting (from 2024)

Corporate Pledges to meet warming neutrality

20% emissions reduction by 2025, 50% by 2030, and Net Zero emissions by 2040 [at the latest]

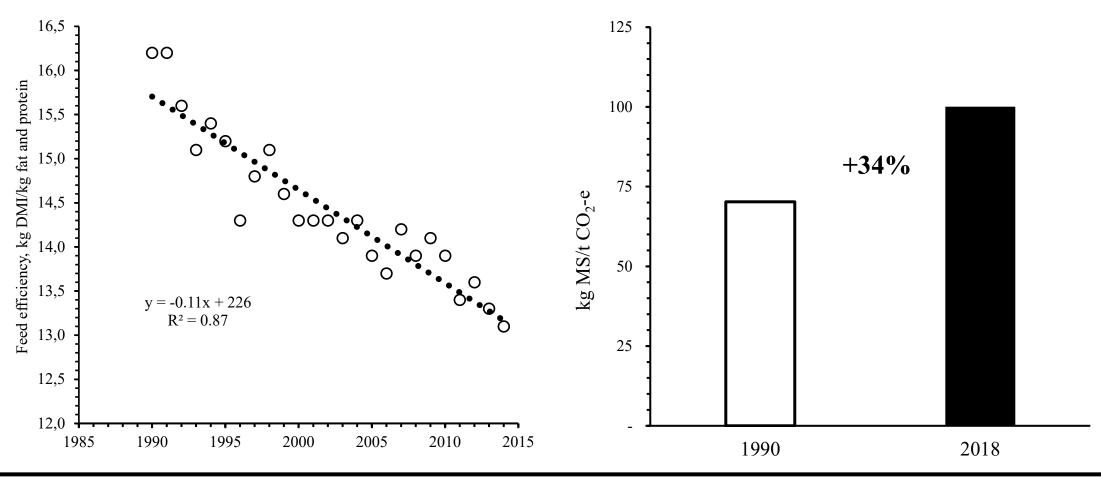
net-zero greenhouse gas emissions by 2040

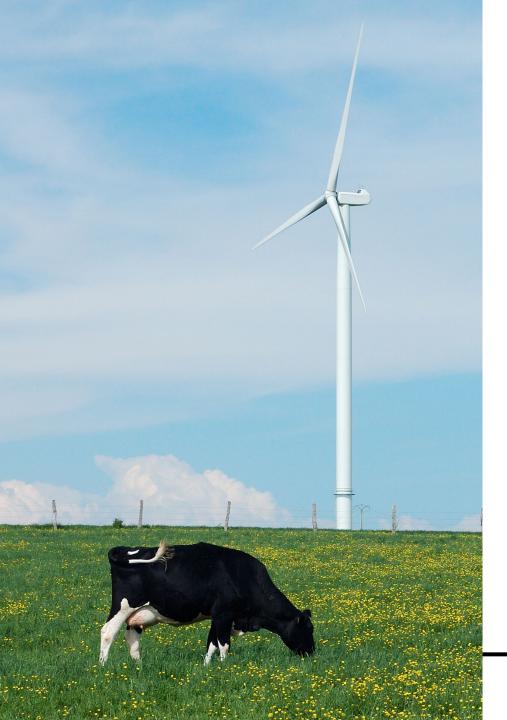
reduce absolute methane emissions from its fresh milk supply chain by 30% by 2030

reduce supply chain emissions by 30% by 2030

emissions reduction of 50% by 2030 across all Scope 1, 2 & 3

net zero greenhouse gas ("GHG") emissions across its operational footprint (Scope 1 and Scope 2) and entire global supply chain (Scope 3) by 2050




Mitigations

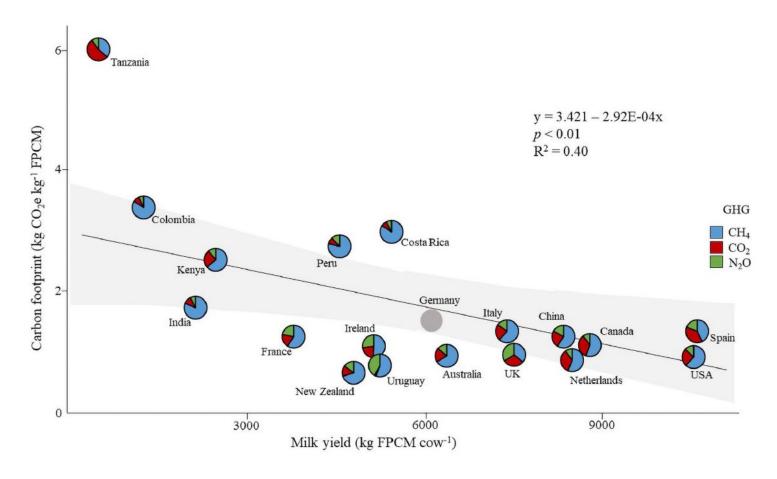
Enteric fermentation is >95% of methane and >80% GHG on a grazing farm

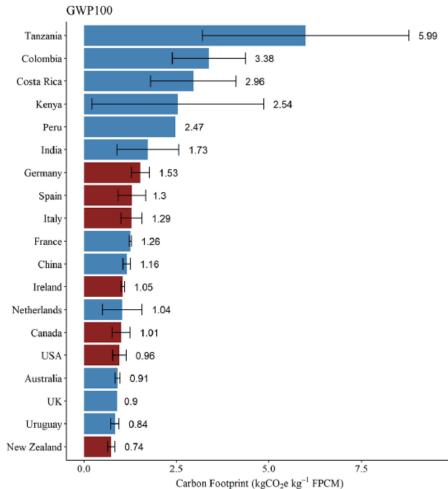
 Genetics for efficiency and low methane;

Increased efficiency – more milk/kg DMI or CO₂-e

Mitigations

Enteric fermentation is >95% of methane and >80% GHG on a grazing farm

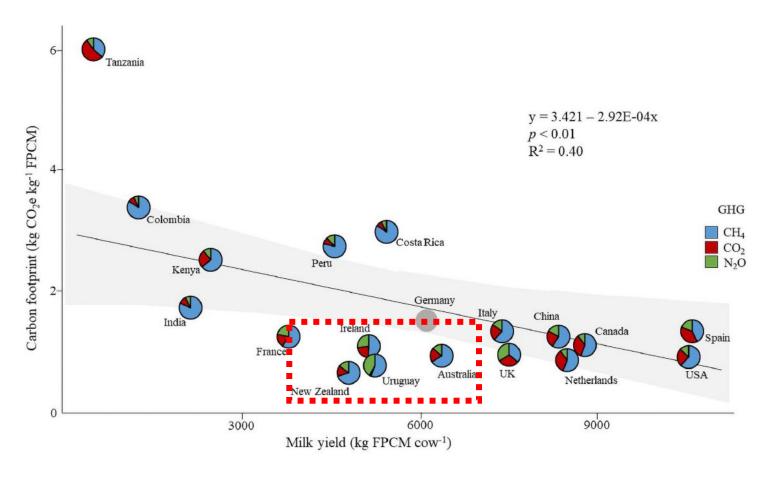

- Genetics for efficiency and low methane;
- Rumen modifiers;
- Methane inhibitors;
- Effluent pond inhibitor;
- Vaccine.

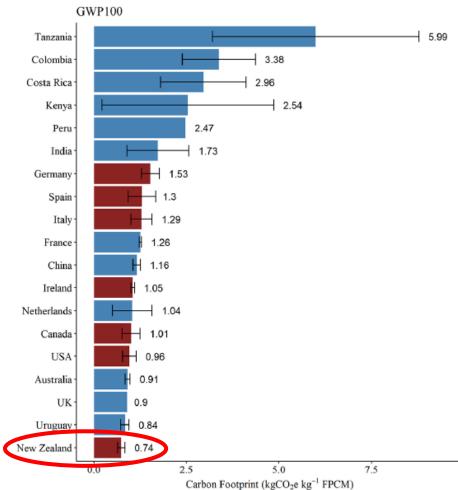

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mapping the carbon footprint of milk production from cattle: A systematic review

Andre M. Mazzetto, 1* Shelley Falconer, 0 and Stewart Ledgard 1 AgResearch Limited, Lincoln Research Centre, Lincoln 7674, New Zealand

²AgResearch Limited, Ruakura Research Centre, Hamilton 3240, New Zealand




© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mapping the carbon footprint of milk production from cattle: A systematic review

Andre M. Mazzetto, 1* Shelley Falconer, 0 and Stewart Ledgard 1 AgResearch Limited, Lincoln Research Centre, Lincoln 7674, New Zealand

²AgResearch Limited, Ruakura Research Centre, Hamilton 3240, New Zealand

Summary

- Growing global population and need for food security;
- Complete circularity is not possible;
- Focus is on reducing losses of N,
 P, and C to near zero;
- Food must be produced where it is most efficient to do so;
- Removal of barriers to trade.

Contact me:

john.roche@mpi.govt.nz

Follow me:

Down to Earth Advice Ltd

Thought for the Day

@down2earth_john

"It is easier to build strong children than to repair broken men"